Paillier/ZKP

Ballot encryption, ZKP and weighted tallying in the Paillier
cryptosystem

Reto Biirki, Adrian-Ken Riiegsegger
University of Applied Sciences Rapperswil, Switzerland

6/11/2012
Master seminar: E-Voting

Outline

Introduction
m System Architecture
m Our Modules

Theoretical background
m ZKP verification
m Weighted tallying

Implementation
m Overview

m Source

m Demo

Introduction
[]

System Architecture

| keysize, N, T | protected channel
Threshold Key u Partial Private Key Paillier Cryptosystem
Generation by [i=1,N, T, d, n keysize = 1536 bits
Trusted Dealer [i=N,N, T, d, n V=10, N=5, T=3
)
Public Key Partial Decrypt. \i Partiallly Decr. Tally
n, g=n+1 by Trustee i =1, N, T, pt, n
¥ T [i=N,N, T, pt, n
Ballot Encrypt. B Encrypted Tally
and ZKP by Voter v ct Threshold E
3y ? Decryption
Encrypted Ballot | ZKP Check \i J
v=1, ¢, a[], e[], z[] Weighted Tallying Decrypted Tally
|v=V, ¢, a[l, e[], z[] t yes, no, abstention
Shareholder Registry
v, wil

Introduction

@O

Our Modules (1)

m Ballot encryption
m Zero-knowledge proof for ballot of voter v

m Input
m Public key generated by module 1
m Vote instruction (Candidate choice)
m Output

m Encrypted vote (ballot)
m ZKP for vote (a, e, z)
m Election & voter id

Introduction
oe

Our Modules (I1)

m Zero-knowledge proof check of ballot
m Weighted tallying

m Input

Encrypted vote (ballot)

ZKP for vote (a, e, z)

Election & voter id

Voter registry (shares per voter)

m Output

m Encrypted weighted tally (ct)
m Election id

Theoretical background
000

ZKP verification (1)

Prover must show that all uy's are n”’powers
c=g™.r" mod n? (1)

ue = c-(g™) "t mod n? (2)

k number of candidates
i selected candidate

my valid voting messages
u, bulletin board values

m Only possible for k =i
m Without disclosing random r!
m — Use ak,ex and zx arrays to prove it

Theoretical background
(o] e}

ZKP verification (Il)

Sum of all ex’s must be equal to challenge e

[— . b = [

o — {e > ki€ mod2° k 1 3)
ek k£ i

Z ex = e mod 2° (4)

p _ Size (n) (5)

2

b size of challenge in bits (768)
e challenge (hashed voter/election data & commitment)
ec response array e

Theoretical background
[e]e]]

ZKP verification (111)

All zi.'s must be nthpowers

a,-:z,-”moan k=1
ak = -1 .
ak =2z ()" modn® k#i

zi=zi-r¥modn k=i
ZKk =]
Zk ki

2z} = ay - uj* mod n? (8)

a, commitment
€k response array e
Z, response array z

Theoretical background
L]

Weighted tallying

Encrypted tally is product of all encrypted votes modulo n?

Ny
ct = H ¢ mod n? 9)
i=1

cw weighted encrypted vote
w weight (number of shares)
ct encrypted tally

N, number of voters

Additive homomorphic properties

m D (E(m) - E(m2) mod n?) = my + mp mod n
] D(E(m)k modn2> =k-mmod n

Implementation
L]

Overview

Project information

m Programming Language: Ada
m Methodology: Test driven development (TDD)

m Coverage:
m -ftest-coverage -fprofile-arcs -fprofile-generate
m lcov
m genhtml

m Dependencies:
m Ahven (Unit test library)
m GMP (Bignum)
m GNATCOLL (JSON)

Implementation
[]

Project source

m Source code is freely available

m Opensource license: GPLv3+

m http://git.codelabs.ch /?p=paillier-zkp.git

m git clone http://git.codelabs.ch/git/paillier-zkp.git

Implementation
[1]

Talk is cheap. Show me the code.
- Linus Torvalds

Questions

Thank you for your attention!

	Introduction
	System Architecture
	Our Modules

	Theoretical background
	ZKP verification
	Weighted tallying

	Implementation
	Overview
	Source
	Demo

