
Bootloader Signed Block Stream of Commands

(BSBSC, version 1.0)

Reto Buerki, codelabs GmbH

January 2020

CONTENTS 1 INTRODUCTION

Contents

1 Introduction 2

2 Command Stream Loader (CSL) 3
2.1 Write Data to Address . 4

2.1.1 Purpose . 4
2.1.2 Structure . 4

2.2 Fill Region with Pattern . 4
2.2.1 Purpose . 4
2.2.2 Structure . 5

2.3 Set Entry Point . 5
2.3.1 Purpose . 5
2.3.2 Structure . 5

2.4 CPUID Checks . 5
2.4.1 Purpose . 5
2.4.2 Structure . 6

3 Signed Block Stream (SBS) 6
3.1 Image Creation . 7
3.2 Image Veri�cation . 7
3.3 Header . 8
3.4 Signature . 10
3.5 Blocks . 10
3.6 Hash Concatenation . 10
3.7 Padding . 10

4 Reference Implementation 11

1 Introduction

The protocol speci�ed in this document addresses the following issues when loading OS kernels,
or more generally operating system images, via bootloaders:

1. E�cient integrity protection and data origin authentication

2. Checking of hardware/system state before boot

3. Loading data to arbitrary/speci�c memory locations

The �rst item is often referred to as secure boot. The overall goal is to only boot unaltered
images from trusted sources. This is commonly achieved via cryptographic schemes like digital
signatures and support from the hardware (e.g. by providing read-only storage for cryptographic
keys).

Before booting a system on a target machine, it makes sense to check whether its hardware
meets the assumptions of the system to boot. It is bene�cial to do this at an early stage of the
boot process, to minimize code execution in case a precondition is not met.

The 3rd item addresses the problem of memory holes in the physical address space of a target
machine when loading large system images. RAM is often not consecutive because the BIOS may
reserve certain regions for ACPI tables, NVRAM storage etc. In order to place a large image,

2

2 COMMAND STREAM LOADER (CSL)

which spans reserved regions, a mechanism must exist to instruct the bootloader to load data
chunks of given size to a speci�ed memory address.

The protocol outlined in this document consists of two sub-protocols, which can be used
independently or stacked.

In order to instruct the bootloader to perform certain actions in a modular and extensible
way, a Command Stream Loader (CSL) protocol for the x86 architecture is introduced. This is
explained in the following section 2.

To assert the origin and guarantee the integrity of a batch of commands, the signature of the
data must be checked e�ciently before executing the encoded commands. This functionality is
provided by the Signed Block Stream (SBS) protocol speci�ed in section 3.

2 Command Stream Loader (CSL)

A command stream is a Type-Length-Value (TLV) encoded stream of commands which are
intended to be executed in-order by a command processing module in the bootloader. Figure
1 shows an example command stream with four commands and the internal structure of one
command in detail.

Command 1

Command 2

Command 3

Command 4

Version Magic

Command ID

Data Length

Data

Figure 1: Stream of TLV-encoded commands

The Command ID �eld is 16-bits wide and encodes the command to be executed by the
bootloader. The current protocol version de�nes the commands listed in table 1.

ID Constant Description

0 CMD_WRITE Write data to physical address
1 CMD_FILL Fill memory region with pattern
2 CMD_SET_ENTRY_POINT Set kernel/image entry point
3 CMD_CHECK_CPUID Perform CPUID-based system check

Table 1: CSL command IDs

With this mechanism in place, the bootloader command processing unit is able to perform
any action de�ned in the CSL speci�cation, making it a �exible and extensible mechanism to
load system images for boot.

CSL images are identi�ed by the version magic 0x8adc5fa2448cb65e in the �rst eight bytes,
little endian. A CSL implementation is required to check whether this sequence is present before
processing commands.

3

2.1 Write Data to Address 2 COMMAND STREAM LOADER (CSL)

The command ID range 60000 .. 65535 is reserved for vendor speci�c commands, which
are not part of the o�cial CSL speci�cation. A CSL implementation may ignore commands in
this range. It is the responsibility of the person choosing the custom command ID to assure its
uniqueness in the respective context, in spite of the absence of any central registry for IDs.

A CSL implementation is required to check whether the speci�ed data length in the header
matches the expected length of the given command. Certain commands have a �xed data length,
others have a minimum length.

Command parameters, e.g. the physical address of the CMD_WRITE command, are part of the
data section. The data length �eld in the header speci�es the sum of the lengths of the actual
data and all parameters of a command.

Strings delivered as TLV data (e.g. check strings in the CMD_CHECK_CPUID command) must
be Null-terminated. See the following sections for details about the structure and purpose of
each command.

2.1 Write Data to Address

2.1.1 Purpose

The CMD_WRITE command instructs the bootloader to copy the data part of the command to the
physical address speci�ed by the address parameter. The amount of data to write to memory is
the data length stored in the command header minus the size of the physical address parameter
(which is eight bytes).

A CSL implementation is required to check whether the speci�ed address can be reached in
the active addressing mode, and raise an error and abort if not. It also needs to check whether
the address lies within addressable RAM.

2.1.2 Structure
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Command ID=1 Reserved

Reserved

Data Length>=9

Header

Physical Address

Arbitrary Data

Data

2.2 Fill Region with Pattern

2.2.1 Purpose

The CMD_FILL command consists of the physical address, length and pattern arguments. It directs
the bootloader implementing the CSL protocol to �ll the physical memory region spanned by
address and length parameters with the speci�ed byte pattern.

A CSL implementation is required to check whether the speci�ed address can be reached in
the active addressing mode, and raise an error and abort if not. Furthermore, it needs to check
whether the memory region is within addressable RAM.

4

2 COMMAND STREAM LOADER (CSL) 2.3 Set Entry Point

2.2.2 Structure
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Command ID=2 Reserved

Reserved

Data Length=24

Header

Physical Address

Length

Pattern Reserved

Reserved


Data

2.3 Set Entry Point

2.3.1 Purpose

After the OS kernel or system image has been constructed in memory via the CMD_WRITE and
CMD_FILL commands, the bootloader must know the address to hando� execution, i.e. the
entry point into the OS code. This information is delivered to the CSL implementation via
the SET_ENTRY_POINT command. A bootloader sets the Entry Point Address value of this
command as the eip or rip value in its boot state. All other registers of the state structure
must be set to zero.

A CSL implementation is required to check whether the speci�ed address can be reached in
the active addressing mode, and raise an error and abort if not.

2.3.2 Structure
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Command ID=3 Reserved

Reserved

Data Length=8

Header

Entry Point Address

}
Data

2.4 CPUID Checks

2.4.1 Purpose

CPUID-based checks are a way to make sure the system image encoded in the CSL format is
deployed on a hardware platform supporting the required CPU features.

The CPUID instruction returns processor identi�cation and feature information to the EAX,
EBX, ECX, and EDX registers, as determined by input entered in EAX (in some cases also

5

3 SIGNED BLOCK STREAM (SBS)

ECX). A CSL implementation must check whether the CPUID instruction is available on the
target hardware, if CPUID commands are encoded in the CSL image. The ID �ag (bit 21) in the
EFLAGS register indicates support for the CPUID instruction.

The EAX Value and ECX Value parameters specify the input to the CPUID operation. After
execution, the Mask is applied to the register speci�ed by the Result Register �eld (table
2) and compared to the given Value. If the value is equal, the check is passed. If not, the
implementation must raise an error and abort.

The 64-bytes check string is used to indicate to the user what check is performed in human
readable form. This string must be Null-terminated. A CSL implementation must either check
whether the string is Null-terminated and abort if not, or it may enforce it by allocating a
character array of 64 bytes and explicitly setting the last byte to zero.

Future CSL protocol revisions may provide additional commands to check arbitrary memory
locations, MSRs, control registers and the EFER register.

ID Register

0 EAX
1 EBX
2 ECX
3 EDX

Table 2: CPUID result register encoding

2.4.2 Structure
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Command ID=4 Reserved

Reserved

Data Length=88

Header

ECX Value

EAX Value

Value

Mask

Result Register Reserved

Reserved

Check String (64 bytes)



Data

3 Signed Block Stream (SBS)

The Signed Block Stream protocol described in this section is a mechanism to verify the origin
and integrity of a command stream image described in the previous section. This is particu-

6

3 SIGNED BLOCK STREAM (SBS) 3.1 Image Creation

larly important because the CSL implementation executes encoded commands. However, such a
mechanism is generally important in a secure boot context.

Note that the concept described in this section does not depend on the CSL protocol, it can
be used to integrity protect any type of data.

3.1 Image Creation

Figure 2 outlines the principal operation of SBS. An input �le is split into equal chunks of data
of a given size. A block of Block Size encompasses the data block from the �le plus a hashsum.
The Hash �elds in the blocks specify the Hash of the Next Block.

Data Block 1

Data Block 2

Data Block 3

Data Block 4

File

Hash 4

Data Block 4

Hash 3

Data Block 3

Hash 2

Data Block 2

Hash 1

Data Block 1

Signature

Parameters

Root Hash

Hash(Hash 4|Block 4)

Hash(Hash 3|Block 3)

Hash(Hash 2|Block 2)

Hash(Hash 1|Block 1)

Sign(Hdr)

Figure 2: Hashing and signing operations

The hash of the last block must be zeroed, as there is no next block. The �le data is read
in reverse order and packed into blocks, whereas each block contains the hashsum over the next
block data and hashsum value, as illustrated in �gure 2. Reading the �le from the end to the
start allows to directly calculate the hashsums on the go, no second pass is required.

The block stream is prepended by signature data and header structure. The header contains
the root hash and block stream parameters. The root hash is the hashsum of the �rst block data
and hashsum value. The hashsum �elds in the stream form a chain, where the root hash and
hash of next block �elds in the actual blocks form the links of the chain.

The complete header data including the root hash is signed, and the signature is stored after
the header, before the start of the �rst block.

3.2 Image Veri�cation

In order to verify the integrity of the start of an SBS image, only the header data must be read
and its signature checked. It is not necessary to read the entire image to establish data origin

7

3.3 Header 3 SIGNED BLOCK STREAM (SBS)

authentication, as is done in the vast majority of current signature veri�cation schemes. If the
signature is valid, the root hash designates the hashsum of the next block, which is block one in
this case. This establishes the �rst link in the chain of blocks.

The remaining blocks are checked while data is read. An SBS implementation reading the
blocks can now check the hash of the next block before handing data to an upper layer for con-
sumption. It can detect whether the data has been tampered with by checking all the hashsums
along the chain.

3.3 Header

The header of the current protocol revision with version magic 0xe6019598 is speci�ed in �gure
3. The header �elds have the following properties:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Magic

Block Count

Block Size

Signature Data Length

Header Size Hashsum Length

Hash Algorithm ID 1 Hash Algorithm ID 2

Hash Algorithm ID 3 Hash Algorithm ID 4

Signature Scheme ID Reserved

Padding Length

Root Hash
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3: SBS header

• Sizes are in bytes

• Byte ordering is little-endian

• The Version Magic �eld de�nes the version of the SBS protocol. If an implementation
does not recognize the speci�ed magic, an error must be raised and all data discarded

• The size of the blocks is speci�ed by the Block Size �eld. This value denotes the size of
the block data plus the block hashsum �eld

• The size of the header is speci�ed in the Header Size �eld and encompasses all header
data from the �rst byte of the Version Magic to the last byte of the Root Hash �eld

8

3 SIGNED BLOCK STREAM (SBS) 3.3 Header

• An implementation must check whether the Header Size value matches the expected value
and abort if not

• The Padding Length �eld de�nes the number of padding bytes in the data of the �rst
block in the stream

• The length of the Root Hash �eld is determined by the con�gured hash algorithms

• Root Hash is the concatenation of the hashsums produced by the algorithms given in
the four 16-bit Hash Algorithm ID �elds, starting with the hashsum produced by the
algorithm given as Hash Algorithm ID 1 (at the lowest order byte)

• The Root Hash hashsum value is the hash of the complete �rst block content: the hashsum
and data �elds, including padding bytes

• An implementation must raise an error and abort if the speci�ed Hashsum Length does
not match the expected length of the concatenated hashsums formed by Hash Algorithm

ID 1 .. 4

• At least Hash Algorithm ID 1 must be set

• A hash algorithm ID of zero designates None

• An implementation must raise an error and abort if it encounters an unknown Hash

Algorithm ID or Signature Scheme ID

• An implementation must raise an error and abort if the Signature Data Length value
does not match the expected value given by the con�gured (and supported) signature
scheme.

The current protocol version speci�es the hash algorithms and signature schemes as listed in
tables 3 and 4.

ID Algorithm

0 None
1 SHA1
2 SHA2_256
3 SHA2_384
4 SHA2_512
5 RIPEMD_160

Table 3: SBS hash algorithm IDs

ID Scheme

1 PGP Signature (RFC 4880, section 5.2)

Table 4: SBS signature scheme IDs

The number range 60000 .. 65535 is reserved for vendor speci�c algorithms and mecha-
nisms, which are not part of the o�cial SBS speci�cation. It is the responsibility of the person
choosing the custom algorithm ID to assure its uniqueness in the respective context, in spite of
the absence of any central registry for IDs. An SBS implementation is still required to raise an
error and abort if it encounters an unknown ID in this range.

9

3.4 Signature 3 SIGNED BLOCK STREAM (SBS)

3.4 Signature

The signature data following the header contains the signature produced by the given signature
scheme over the complete SBS header data.

3.5 Blocks

Blocks in the stream have the following structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hash of Next Block

Data

Both �elds are variable in length, depending on the con�gured block size and hash algorithms:

Block_Data_Length = Header.Block_Size−Header.Hashsum_Length (1)

The Hash of Next Block �eld is the concatenation of the hashsums produced by the algo-
rithms given in the four 16-bit Hash Algorithm ID �elds, starting with the hashsum produced
by the algorithm given as Hash Algorithm ID 1 (at the lowest order byte). The length of the
�eld is given by:

Header.Hashsum_Length = Len(Hash_Algo_1)

+Len(Hash_Algo_2)

+Len(Hash_Algo_3)

+Len(Hash_Algo_4)

(2)

The original size of the encoded �le can be calculated using the following formula:

Encoded_File_Size = Header.Block_Count ∗Block_Data_Length
−Header.Padding_Length

(3)

3.6 Hash Concatenation

SBS supports the con�guration of up to four hash algorithms to calculate the next block and
root hashsum �elds. The resulting hash value is a concatenation of all con�gured hashsums, as
illustrated with exemplary hashsum lengths in �gure 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hash 1 Hash 2 Hash 3

Figure 4: Concatenation of hashes with three con�gured hash algorithms

3.7 Padding

The �rst block may require padding with zero-bytes of Padding Length, in order to split the data
evenly into blocks. Figure 5 gives an example of a signed block stream with exemplary data
lengths to illustrate the basic layout.

10

4 REFERENCE IMPLEMENTATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header

Signature Data

Hash 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data Block 1

Hash

Data Block 2

Figure 5: Example SBS stream with block 1 padding zero-bytes in gray

4 Reference Implementation

The SBS tools project1 provides an implementation of an SBS generator, which produces signed
block stream images with SHA512 hashsums and PGP signatures. The project also provides a
tool to inspect SBS images.

The τ0 System Resource Manager of the Muen Separation Kernel (SK) project2 generates
system images in CSL format. Muen uses both the SBS and CSL protocols to securely deploy
system images on various hardware targets.

The GRUB2 bootloader has been extended with CSL and SBS modules to process signed
block and command streams3.

Coreboot's4 FILO bootloader payload has been extended with a CSL module to process
command streams5. Since FILO (and libpayload) do not have cryptographic primitives (except
SHA1), an implementation of SBS is not yet available in FILO.

1https://www.codelabs.ch/sbs-tools
2https://muen.sk
3https://github.com/codelabs-ch/grub2
4https://www.coreboot.org/
5https://github.com/codelabs-ch/filo

11

https://www.codelabs.ch/sbs-tools
https://muen.sk
https://github.com/codelabs-ch/grub2
https://www.coreboot.org/
https://github.com/codelabs-ch/filo

	Introduction
	Command Stream Loader (CSL)
	Write Data to Address
	Purpose
	Structure

	Fill Region with Pattern
	Purpose
	Structure

	Set Entry Point
	Purpose
	Structure

	CPUID Checks
	Purpose
	Structure

	Signed Block Stream (SBS)
	Image Creation
	Image Verification
	Header
	Signature
	Blocks
	Hash Concatenation
	Padding

	Reference Implementation

