IKEvV2 Separation:
Extraction of security critical components into a
Trusted Computing Base (TCB)

Reto Biirki, Adrian-Ken Riiegsegger

February 4, 2013

University of Applied Sciences Rapperswil (HSR), Switzerland

Abstract

The IPsec protocol relies on the correct operation of the IKE key exchange to
meet its security goals. The implementation of the IKE protocol is a non-trivial
task and results in a large and complex code base. This makes it hard to gain
a high degree of confidence in the correct operation of the code.

We propose a component-based approach by disaggregating the IKE key
management system into trusted and untrusted components to attain a higher
level of security. By formulating desired security properties and identifying the
critical components of the IKE protocol, a concept to split the key management
system into an untrusted and trusted part is presented. The security-critical
part represents a trusted computing base (TCB) and is termed “Trusted Key
Manager” (TKM). Care was taken to only extract the functionality that is abso-
lutely necessary to ensure the desired security properties. Thus, the presented
interface between the untrusted IKE processing component and TKM allows
for a small and robust implementation of the TCB. The splitting of the pro-
tocol guarantees that even if the untrusted side is completely subverted by an
attacker, the trusted components uphold the proposed security goals.

The viability of the design has been validated through a prototypical imple-
mentation of the presented system. The untrusted parts of the IKE daemon
have been implemented by extending the existing strongSwan IKE implemen-
tation. The trusted components have been implemented from scratch using the
Ada programming language, which is well suited for the development of robust
software. The new Design-by-Contract feature of Ada 2012 has been used for
the implementation of state machines, to augment the confidence of operation
according to the specification.

Contents

Introduction

1.1 Overview o i e e e e e e e e
1.1.1 IPsecand IKEv2
1.1.2 strongSwano
1.1.3 Adao
1.1.4 Trusted Key Manager

1.2 Related work o

Analysis

2.1 IKEv2 protocol analysis
2.1.1 Notation.
21.2 IKE SA INIT.
213 IKE AUTH
214 CREATE _CHILD SA

2.2 Codeanalysis
221 IKE SA INIT.
222 IKE AUTH oo,
2.2.3 CHILD _CREATE SA
2.2.4 Source of randomness
2.2.5 Payload encryption oL
2.2.6 Payload decryption oL,

Design

3.1 Threat model

3.2 TCB security properties o

3.3 Assumptions Lo o e e

34 Splitof IKE o
3.4.1 Contexts and identifiers

3.5 Requirementso e
3.5.1 TCBrobustness
3.5.2 Separation
3.5.3 Communication Lo
3.5.4 Separation of key materialo 0.
3.5.5 Cryptographic operations
3.5.6 Authentication L0000,
3.5.7 Imtegrity oo o
3.5.8 Availability o

10
11
11
11
12
12
12

14
14
15
15
16
17
17
18
19
20
23
23
24

CONTENTS CONTENTS

4 TKM interface 31
4.1 Protocol overview oL 31
4.1.1 Notation.o 31
4.1.2 Creationofan IKE SA. 32
4.1.3 Creationof a Child SA 33
414 Rekeyingofan IKESA 34
415 Rekeyingofachild SA. 34

4.2 Data types and constantso L. 35
421 Integer types 35
4.2.2 Variable octet types oL 36
423 Constants e 37
4.2.3.1 result typeconstants 37

4.2.3.2 version type constants 37

4.2.3.3 dh algorithm type constants 37

4.2.3.4 protocol type constants 38

4.3 Exchanges e 39
4.3.1 IKE Exchanges 39
43.1.1 mnc_create. oL 39

43.1.2 mnc reset 40

4313 dh create 41

4.3.14 dh generate key 41

4315 dh reset o oo 42

4.3.1.6 cc_set user certificate 42

4.3.1.7 cc_add_certificate.o 43

4318 cc check ca 44

4319 cc_reset 44

4.3.1.10 ae_reset oo 45

4.3.1.11 isa_create 46

4.3.1.12 dsa_sign.o 47

43113 isa auth 47

4.3.1.14 isa create child00 48

4.3.1.15 isa_reset 49

4.3.1.16 esa_create first 50

4.3.1.17 esa_create 50

43118 esa create mo pfs 51

4.3.1.19 esa_selecto 52

4.3.1.20 esa_reset Lo 53

4.3.1.21 tkm wversion 593

4.3.1.22 tkm limits 54

43123 thm reset 35

4.3.2 ESP SA Event Service (EES) Exchanges 55
4321 esa_acquire 56

4.3.2.2 esa_expireo 56

4.4 Statemachines o 57
441 Notation. oo 57
442 Nonce Context (nc) 57
4421 States 58

4.4.2.2 Transitions o oo o8

4.4.3 Diffie-Hellman Context (dh) 58
4431 States o e 59

CONTENTS CONTENTS
4.4.3.2 Transitions L. 59

4.4.4 Certificate Chain Context (cc) 60
4441 Stateso oo 60

4.44.2 Transitions Lo, 60

4.4.5 Authentication Endpoint Context (ae) 61
4451 Stateso oo 61

4.4.5.2 Transitions L. 62

4.4.6 IKE SA Context (isa) 63
4.4.6.1 States 63

4.4.6.2 Transitions 64

4.4.7 ESP SA Context (esa) 64
4471 States 64

4.4.72 Transitions 65

5 Implementation 66
5.1 System Overviewo 66
5.2 XML specification o o 67
5.3 RPC library: tkm-rpc oo oL 69
5.3.1 Basicoperation 0oL 69
5.3.2 Request and Response types 71
5.3.3 Client-side usage 71
5.3.3.1 Transport mechanism abstraction 72

5.3.3.2 Request handling 72

5.3.4 Server-side processing 73
5.3.4.1 Operation dispatching 74

5342 Errorhandling 75

5.4 charon-tkm L 75
54.1 Adaintegration oL 76
5.4.2 Imitialization oo, 76
54.3 IDmanager e 76
544 Datapassing oo 7
54.4.1 Chunkmap 7

5.4.4.2 Piggybacking 0oL 78

5.4.5 Nonce generation plugin 78
5.4.6 Diffie-Hellman plugin 79
5.4.7 Keymat plugin 79
5.4.8 Kernel IPsec plugin, 79
5.4.9 Private key plugin 0000, 80
5.4.10 Publickey plugin 80
5.4.11 Bus listener plugin L., 80
5.4.12 ESP SA event service (EES) 81
5.4.13 Exception handler (EH) 81

5.5 TKM. . . o e 82
5.5.1 Client communication 82
5.5.2 Nonce generation 82
5.5.3 Diffie-Hellman, 82
5.5.4 Keyderivation 0000, 83
5541 IKESAkeys 83

5.54.2 Child SAkeys 84

5.5.0 Privatekey Lo o 84

CONTENTS CONTENTS

5.5.6 CA certificate Lo L o 84
5.5.7 Authentication 85
5.5.7.1 Signature generation 85

5.5.7.2 Signature verification 86

5.5.7.3 Certificate chain validation 86

5.5.8 Kernel SPD/SAD management 88

5.6 Xfrm-proxyo e 88
5.7 Additional components 89
5.7.1 Anet e 89
5.7.2 xfrm-ada oo 90
5.7.3 x509-Ada 90

5.8 Limitations e 90
5.8.1 Cryptographic algorithms 90
5.8.2 Identity handling 91
5.8.3 Certificatesand keys 91
5.8.4 Certificate chain context reuse 91
5.8.5 Source of randomness oL 91
5.8.6 Exception mappingo oL 91

5.9 Conformance 91
6 Conclusion 94
6.1 Contributionso oL 94
6.1.1 IKE protocol split 94
6.1.2 Prototype implementation 94

6.2 Futurework 95
6.2.1 Credential set L oo 95
6.2.2 Exception mapping oL 95
6.2.3 Additional checks for generated key material 95
6.2.4 Validation of certificates 95
6.2.5 Configuration subsystem 95
6.2.6 Automated tests oL Lo 96
6.2.7 Cryptanalytic review oL 96
6.2.8 Platform integration 96

List of Figures

1.1 Trusted Computing Base. 10
2.1 IKE SA establishment 18
2.2 IKE SA authentication 20
2.3 IKE public key authenticators 21
2.4 IKE Certificate trust chain verification 22
2.5 Child SA establishment 22
2.6 Nonce generation 0. 23
2.7 IKE SA payload encryption 24
2.8 IKE SA payload decryption 25
3.1 Split of IKE into trusted and untrusted parts 28
4.1 Request and response structure 0. 39
4.2 Nonce context state machine 58
4.3 Diffie-Hellman context state machine 60
4.4 Certificate chain context state machine 61
4.5 Authenticated endpoint context state machine. 63
4.6 IKE SA context state machine 64
4.7 ESP SA context state machine 65
5.1 System overviewo e e e e e e 67
5.2 XSL Transformation of XML specification 68
5.3 BasicIPCoperation 70
5.4 TKM trust chain validation overview 86
5.5 TKM trust chain set user certificate 87
5.6 TKM trust chain add certificates 87
5.7 TKM trust chain check CA 88
5.8 XFRM proxy architecture 89

List of Tables

2.1
2.2
2.3
2.4

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33

IKEv2 payloads oo 15
Critical IKE SA INIT payloads 16
Critical IKE _AUTH payloads 17
Critical CREATE CHILD SA payloads 17
Integer typeso 35
Variable octet sequence types oL 36
result type constants oL 37
version type constants. oL 37
dh_algorithm type constants 37
protocol typeconstants oL 38
nc_create request parameters o000 40
nc_create response parameters L. 40
nc_reset request parameters. L. Lo L 40
nc_reset response parameterso e 40
dh _create request parameters 41
dh_create response parameters 41
dh_generate key request parameters 41
dh generate key response parameters 42
dh _reset request parameters 42
dh_reset response parameters 42
cc_set user_ certificate request parameters 43
cc_set user certificate response parameters 43
cc_add_certificate request parameters L. 43
cc_add _certificate response parameters 44
cc_check carequest parameters 44
cc_check caresponse parameters 44
cc_reset request parameters L0 oL 45
cc_reset response parameters oL 45
ae_reset request parameters oL Lo L 45
ae_reset response parameters 0w e e e 45
isa_create request parameters L. 46
isa_ create response parameters 46
isa_sign request parameters 0L L 47
isa_sign response parameters 47
isa_auth request parameters 48
isa__auth response parameterso 48
isa_create child request parameters 48

LIST OF TABLES LIST OF TABLES

4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68

5.1

6.1

isa_create child response parameters 49
isa_reset request parameters L. 49
isa_reset response parameters 49
esa_ create_first request parameters 50
esa_create first response parameters 50
esa_create request parameters L0 o1
esa_create response parameters00 o1
esa_create_no_ pfs request parameters 52
esa_create_no_pfs response parameters 92
esa_select request parameterso L. 52
esa_select response parameterso 593
esa_reset request parameterso 000 593
esa_reset response parameters L 53
tkm _version request parameters 54
tkm version response parameters 54
tkm limits request parameters 54
tkm limits response parameters 54
tkm reset request parameters 59
tkm _reset response parameters L. 55
esa_acquire request parameters L. 56
esa_acquire response parameters 56
esa__expire request parameterso 56
esa__expire response parameters oL e o7
Nonce Context States 58
Nonce Context Transitions 58
Diffie-Hellman Context States 59
Diffie-Hellman Context Transitions 59
Certificate Chain Context States 60
Certificate Chain Context Transitions 60
Authentication Endpoint Context States 62
Authentication Endpoint Context Transitions 62
IKE SA Context States 63
IKE SA Context Transitions. 64
ESP SA Context States 64
ESP SA Context Transitions 65
Implemented cryptographic algorithms 90
Possible target IKE/TKM platforms 97

Listings

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Specification of nonce create transition 69
Generated Ada nonce create procedure 69
nc_create request-specific data typeo 71
Client Tkmrpc transport abstraction 72
Nc_ Create procedure declaration (client-side) 73
ike nc_create function declaration 73
Nc_ Create procedure declaration (server-side) 74
Ike request dispatcher 74
Process stream generico oo 75
Nonce ID insertion e 77
Nonce ID retrieval 77
isa_info tstruct 78
Piggybacking L 78
TKM HMAC SHA-512 oo oo 83
Create Esa precondition &4
Signature generation 85
Certificate validity check L oL 87

Chapter 1

Introduction

In a system with high requirements on security, functions relevant to guarantee
these requirements must be isolated from the rest of the system and consolidated
in a Trusted Computing Base (TCB). To be trusted, this code must be as
minimal as possible to allow formal verification of code correctness. Lampson
et al. [20] define the TCB of a computer system as:

A small amount of software and hardware that security depends
on and that we distinguish from a much larger amount that can
misbehave without affecting security.

It is an easier task to design a system from scratch with separation properties
in mind than dividing an existing project or protocol later. This is not always
possible, and more importantly, sometimes not intended. Functionality in an
existing system identified as uncritical should be left as is as much as possible.

In order to isolate functionality in a TCB, critical sections of existing systems
must be identified and they must be separated into a critical (trusted) and
non-critical (untrusted) part. Communication mechanisms between the sections
needs to be established, which must be robust and well defined. If an attacker is
able to compromise the untrusted-part of the system, the security and integrity
functions guaranteed by the TCB must still hold.

Figure 1.1 depicts a simple schematic of an example TCB. Components
colored in red specify trusted components inside the TCB. The TCB normally
consists of multiple such components which implement different, separated func-
tionality. One or more untrusted components colored in black exchange data
with the TCB over an interface. This coloring scheme is used throughout this
document to label untrusted and untrusted components.

Figure 1.1: Trusted Computing Base

10

CHAPTER 1. INTRODUCTION 1.1. OVERVIEW

1.1 Overview

This section gives an introduction into the terminology and systems used in
this project and explains the basic key concepts. Section 1.1.1 briefly outlines
IPsec and the IKEv2 protocol, section 1.1.2 introduces an implementation of
this protocol in the form of the strongSwan' project. Section 1.1.3 summarizes
the most important aspects of the Ada programming language, which is used to
implement the Trusted Key Manager (TKM) specified by this paper. The term
TKM is explained in the following section 1.1.4.

1.1.1 IPsec and IKEv2

Internet Protocol Security (IPsec) provides, as the name implies, security ser-
vices to the Internet Protocol (IP). This is done by encrypting and authenti-
cating IP packets of communication sessions. The protection is transparent to
the communicating applications because it is performed in the IP layer. To
protect packets, cryptographic transforms are applied to them which in turn
require cryptographic keys. The bundle of algorithms and data that provide the
parameters necessary to operate these cryptographic transforms are called a se-
curity association (SA). For more information on the IPsec protocol suites, the
reader is directed to the corresponding “Security Architecture for the Internet
Protocol” RFC [18].

Parameters and keys needed to establish a security association are usually
provided to the IPsec protocol suite by means of the Internet Key Exchange
(IKE) protocol. The IKE protocol is responsible for the key establishment phase
and the negotiation of the cryptographic algorithms between communicating
endpoints. There are two versions of the IKE protocol: IKEvl and IKEv2
[9, 16]. IKEv2 was designed to add new features and correct some problems
found in the previous version. This project exclusively targets the newer IKEv2
protocol, IKEv1 is not considered.

To negotiate cryptographic keys, SA parameters and to perform mutual
authentication, message pairs are exchanged between the participating peers.
Section 2.1 explains the message exchanges of the IKEv2 protocol in detail.
The service implementing the IKE protocol is normally provided by an user
space application.

1.1.2 strongSwan

The strongSwan project is an open-source IPsec-based VPN solution for Unix-
like operating systems. It provides the charon daemon, which is a feature-rich
implementation of the Internet Key Exchange protocol version 2° (IKEv2) as
specified in [16].The software is implemented using the C programming lan-
guage with an object oriented (OO) approach. This allows to emulate modern
programming paradigms while still using a standard C compiler and tool set?.

By using a flexible plugin architecture, the strongSwan project can be easily
extended with new features. The task of adding new features can be reduced

lhttp://www.strongswan.org/

2The project also implements IKE version 1 (IKEv1) but this project is only concerned
with IKEv2.

3http://wiki.strongswan.org/projects/strongswan/wiki/ObjectOrientedC

11

http://www.strongswan.org/
http://wiki.strongswan.org/projects/strongswan/wiki/ObjectOrientedC

1.2. RELATED WORK CHAPTER 1. INTRODUCTION

to writing a new plugin. This architecture has proven to be very helpful in
the course of this project, as very few changes were required in the upstream
core strongSwan code to implement the Trusted Key Manager (TKM, 1.1.4)
architecture.

1.1.3 Ada

Ada is a structured, strongly typed programming language. The language has
initially been designed by Jean Ichbiah from Honeywell Bull in the 1970s. Ada
has a very similar structure to Pascal and is often used for systems with a special
demand for security and integrity.

The development of Ada was initiated by the US Department of Defense
(DoD) in order to consolidate and supersede the hundreds of programming lan-
guages used in their countless projects. The new language should comply with
all identified DoD requirements (dubbed “Steelman Language Requirements”
[10]), which focused strongly on security and safety.

Ada was the first standardized high-level programming language [11]. The
current version is Ada 2012 which supports all modern programming paradigms.
It has just recently been released! as an ISO standard [2]. Ada 2012 adds the
possibility to use contract-based programming methods (“Design by contract”
[23]).

Ada compilers, before used in practice, have to pass a standardized test suite
which guarantees the compliance of the compiler with the Ada standard. Since
Ada provides many features which aid in the development of safety and security
critical applications, it is nowadays mostly used in areas where such aspects
are important. The primary industries making use of Ada are avionics, railway
systems, banking, military and space technology.

The language is named after Lady Ada Lovelace’, the daughter of Lord
Byron, who is considered to be the first computer programmer.

GNAT, a free-software compiler for the Ada programming language, is avail-
able as part of the GNU Compiler Collection.

1.1.4 Trusted Key Manager

The Trusted Key Manager is a minimal TCB developed during this project
which implements the identified security-critical functions of the IKEv2 protocol
using the Ada programming language. The TKM is explained in detail in section
5.5.

The TKM uses the tkm-rpc library to communicate with the strongSwan
charon daemon in the untrusted part. This library is also written in Ada and
explained in section 5.3.

1.2 Related work

The concept of decomposing larger systems into smaller, trusted parts dates
back to John Rushby in 1981 [26]. The most prominent implementations of

4The announcement was made on December 18, 2012: http://www.ada-
europe.org/press/20121218-Ada2012.pdf
5 Ada Lovelace - http://en.wikipedia.org/wiki/Ada_Lovelace

12

CHAPTER 1. INTRODUCTION 1.2. RELATED WORK

the concept exist in the form of microkernels (p-kernels), which provide the
foundation to separate functionality into smaller, separated parts by providing
compartments for subjects running in userspace. Examples of such systems are
Fiasco®, L4Ka::Pistachio’” and Coyotos®. Type-1 (bare-metal) hypervisors like
Xen are intentionally excluded from the list because Xen requires a complete
Linux kernel (dom0) with direct access to hardware to operate. The fact that
the dom0 kernel must be accounted as part of the trusted system makes it
unsuitable for in-depth review and therefore unusable as part of a TCB”.

Even though the concept proposed by Rushby offers many advantages related
to security and integrity, it has not been widely realized. Common operating
systems like Windows, Linux and *BSD variants use a monolithic kernel, which
itself must be trusted as a whole, even though the compromise of a device driver
can corrupt the complete system.

One reason seems to be the tremendous effort needed to adapt existing
software to a separation concept. In order to move critical parts into a TCB,
the existing code must be studied and sensitive parts re-implemented using
the corresponding APIs and methods of the underlying separation platform.
Of course, the complete system could be rewritten for the dedicated secure
environment, but often this is not possible and especially not desired for code
deemed as untrusted. The dedicated goal is to only re-implement sensitive parts
while leaving the untrusted part mostly untouched.

A different reason for the disregard of Rushby’s ideas by most software ven-
dors is the focus on extending the functionality of existing products by adding
new features. This phenomenon is known as feature creep.

Research has been done in the formal analysis of the IKEvl and IKEv2
protocols [7, 22|, pointing out weaknesses in both standards. The separation of
the sensitive part from the bulk of the IKE protocol seems to be a valuable effort
to minimize the working surface of attacks. Nevertheless, the IKEv2 separation
protocol described in this paper must still undergo the same rigorous verification
as the original protocols to formally show the delivered security improvements
compared to its monolithic ancestor.

The presented project is based on the concept of IKEv2 disaggregation de-
scribed in [25], which is the result of preliminary research on the same topic.

Shttp://os.inf.tu-dresden.de/fiasco/

Thttp://www.ldka.org/65.php

8http://www.coyotos.org/

9Concepts for Dom0 disaggregation exist [5] but they have not been implemented in Xen.

13

http://os.inf.tu-dresden.de/fiasco/
http://www.l4ka.org/65.php
http://www.coyotos.org/

Chapter 2

Analysis of strongSwan

This chapter describes the current operation and the inner workings of the
strongSwan charon IKEv2 daemon. A deep understanding of these mechanisms
is a prerequisite for the extraction of sensitive functionality from the daemon
into a minimal trusted part to achieve the requirements formalized in section
3.5 later.

The following section 2.1 will therefore provide an introduction into the
IKEv2 message exchanges in general to give the reader a basic understanding
of the protocol. The main aim of the section is to identify critical payloads
contained in the message exchanges. Section 2.2 will then analyze the code flow
inside the strongSwan charon daemon implementing the actual IKEv2 exchanges
and payload handling.

2.1 IKEv2 protocol analysis

The following section provides a detailed analysis of the IKEv2 message ex-
changes (as specified by [16]), focusing on the security relevance of the trans-
mitted data. All communication using IKE consists of a request / response pair.
The analysis of the message exchanges concentrates on the role of the initiator
since the responder case varies only slightly.

In the following descriptions, the message payloads are indicated by names
as listed in table 2.1.

Every IKE message contains a message ID as part of its fixed header (HDR).
This message ID is used to match up requests and responses, and to identify
retransmissions of messages [16]. The fixed header does not contain security-
relevant information and is therefore omitted from the discussion.

A value declared as critical or sensitive in the following sections must not
be accessible by the untrusted part, i.e. it must not be present in memory
or storage accessible from within the untrusted part. Other payloads (such as
AUTH) are calculated from critical values inside the TCB but then handed to
the untrusted part for further processing and transmission.

14

CHAPTER 2. ANALYSIS

2.1. IKEV2 PROTOCOL ANALYSIS

Notation Payload

AUTH Authentication

CERT Certificate

CERTREQ | Certificate Request

CP Configuration

D Delete

EAP Extensible Authentication
HDR IKE header (not a payload)
1Di Identification - Initiator
IDr Identification - Responder
KE Key Exchange

Ni, Nr Nonce

N Notify

SA Security Association

SK Encrypted and Authenticated
TSi Traffic Selector - Initiator
TSr Traffic Selector - Responder
A% Vendor ID

Table 2.1: IKEv2 payloads

2.1.1 Notation

The exchanges are presented as a communication between peers A and B. The
arrows represent the direction from the source to the destination of the message.
The transmitted values are listed on the right-hand side. Optional parts of the
exchange are enclosed in square brackets. The notation SK { ... } indicates
that the payloads listed inside the curly brackets are encrypted and integrity
protected.

2.1.2 IKE SA INIT

The first pair of messages (IKE SA INIT) negotiate cryptographic algorithms,
exchange nonces, and do a Diffie-Hellman exchange [10]:

1 A — B HDR, SAil, KEi, Ni
B — A : HDR, SAr1, KEr, Nr, [CERTREQ]

The SAil payload states the cryptographic algorithms the initiator supports
for an IKE SA. This payload is not considered critical because the TKM will
only support a subset of cryptographic algorithms which are strong enough and
believed to be secure. A deviation from allowed proposals would only result in
a non-functional configuration since the TKM enforces the allowed algorithms
of a specific connection.

Child keys are derived from the shared secret value resulting from the Diffie-
Hellman exchange after the IKE SA INIT messages. Therefore the TKM must
implement the DH protocol in the TCB and compute the public KE payload
on behalf of the untrusted part. The peers exchange the KE payloads in the
initial IKE SA INIT messages as shown above.

15

2.1. IKEV2 PROTOCOL ANALYSIS CHAPTER 2. ANALYSIS

The nonces Ni and Nr are used as input to cryptographic functions and
provide freshness to the key derivation technique used to obtain keys for the
child SA. Therefore the nonce Ni used in the initial exchange must be randomly
chosen, must be at least 128 bits in size, and must be at least half the key size
of the negotiated pseudo-random function (PRF). These constraints must be
enforced by the TKM. Values created by the responder can not be controlled
by the TKM so these values are taken as is. This is obviously true for all IKE
message exchanges.

The responder may also send a list of its trust anchors in the CERTREQ
payload. This has no relevance for the TCB because it maintains a separate list
of trusted root CAs.

| Created by TKM | KEi, Ni |

Table 2.2: Critical IKE _SA INIT payloads

2.1.3 IKE_AUTH

After the completion of the IKE SA INIT exchange, each party is able to
compute SKEYSEED, from which all keys are derived for that SA. The messages
that follow are encrypted and integrity protected in their entirety, with the
exception of the message headers. The keys used for the encryption and integrity
protection are derived from SKEYSEED and are known as SK_e (encryption)
and SK a (authentication, a.k.a. integrity protection). Separate SK e and
SK a keys are computed for each direction. The payloads marked with SK {
... } are protected using the direction’s SK_e and SK_a ([16], section 1.2).

3 A — B : HDR, SK {IDi, [CERT, [CERTREQ,] [IDr,]
AUTH, SAi2, TSi, TSr}
4 B — A : HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

As stated in the previous section, the DH protocol must be implemented
inside the TCB. As a result, the SK e and SK _a keys must be provided to the
untrusted part. These keys are not considered critical because an attacker taking
over the untrusted part is already able to extract all information protected by
these keys (see the threat model section 3.1).

The initiator asserts its identity with the IDi payload. This value is not
sensitive itself but the TKM must enforce correct identities during the authen-
tication step to assure that only trusted peers are allowed.

The authentication payload AUTH contains the signature allowing the peers
to verify each other’s authenticity. The value inside this payload must be created
by the TKM since it is signed by a private key only known to the TCB. The
signature is handed to the untrusted part because the TKM assures that the
PRF used to generate it (see 5.5.7.1) is strong enough.

Analogous to the IKE _SA INIT exchange, the SAi2/SAr2 payloads are not
considered critical and can be configured directly in the untrusted part. The
same is true for the T'S payloads. The TKM enforces the correct algorithms
and peer addresses before deriving child keys.

The initiator might also send its user certificate in a CERT payload and
a list of its trust anchors in CERTREQ payload(s). If any CERT payloads

16

CHAPTER 2. ANALYSIS 2.2. CODE ANALYSIS

are included, the first certificate provided must contain the public key used to
verify the AUTH field [16]. These payload are uncritical since invalid certificates
would result in an authentication failure.

Created by TKM SK, AUTH
Enforced by TKM | ID, CERT, CERTREQ, SAi, TS

Table 2.3: Critical IKE _AUTH payloads

2.1.4 CREATE CHILD SA

The SK used to protect the CREATE CHILD SA exchange is the same as
described in section 2.1.3. The SK is created by the TKM but handed to the
untrusted part to protect the IKE exchanges from outside attackers. Attack-
ers which have taken over the untrusted part are already able to extract all
information protected by these keys.

5 A — B : HDR, SK {SA, Ni, [KEi], TSi, TSr}
6 B — A : HDR, SK {SA, Nr, [KEr], TSi, TSr}

The SA payloads used to negotiate the algorithms of the child SA are again
not considered critical and can be configured directly in the untrusted part. The
TS payloads specify the IPsec SA endpoints and are also uncritical given that
the TCB maintains and enforces its own policy before installing a new child SA.

Depending on the perfect forward secrecy (PFS)' configuration of the con-
nection, the CREATE CHILD _SA request may optionally contain a KE pay-
load for an additional Diffie-Hellman exchange to enable stronger guarantees
of forward secrecy for the child SA. The keying material for the child SA
is a function of the SK d key created along the SK e and SK a keys dur-
ing the establishment of the IKE SA, the nonces exchanged during the CRE-
ATE CHILD SA exchange, and this public Diffie-Hellman value, if present
([16], section 1.3).

Payloads created by the responder can not be controlled but the algorithms
selected from SA and the traffic selectors selected from T'S must be checked by
the TKM.

Created by TKM | SK, Ni, [KEj]
Enforced by TKM SAi, TS

Table 2.4: Critical CREATE CHILD SA payloads

2.2 Code analysis

This section illustrates the charon source code, which processes the IKEv2 mes-
sage exchanges and the security relevant data as described by the previous
section. Graphs are used to illustrate the code flow of a specific functionality
inside the strongSwan architecture.

IPFS ensures that a session key derived from a long-term key will not be compromised if
the long-term key is disclosed in the future.

17

2.2. CODE ANALYSIS CHAPTER 2. ANALYSIS

2.2.1 IKE_ SA INIT

Figure 2.1 shows the code involved in the IKE SA establishment. The exchange
involves an initiator and a responder which are displayed in separate blocks
in the graph. During IKE SA INIT, two messages are exchanged which are
indicated between the initiator and responder code blocks. Round labels, e.g.
the label (CD), are references to sub-graphs which illustrate a continuative
process in detail.

Initiator Responder
libcharon/sa/ikev2/tasks/ike_init.c ~--1 Message ";__, libcharon/sa/ikev2/tasks/ike_init.c
- n L J
build_i process_r
| config->get_dh_group I dh_group I I process_payloads |
v
~~I keymat->create_dh | dh | process_payloads
i’ I get_dh_group_nr | dh_group |

| build_payloads |

12
¢ I keymat->create_dh | dh |——
v

build_payloads

I ke_pld_create_from_dh | dh | I set_other_public_value | dh |
T
T
NEED_MORE VAEEREORE
A = e build_r
libcharon/sa/ikev2/tasks/ike_init.c
- | derive_keys | keymat %—
process_i v

I process_payloads | |

. build_payloads |

process_payloads build_payloads
| set_other_public_value | dh I

| ke_pld_create_from_dh | dh ‘

process_i

| derive_keys | keymat I»—

charon/sa/keymat.c

libcharon/sa/ikev2/tasks/ike_init.c derive_ike_keys

derive_keys

I Input: proposal, dh, nonces, id, prf_alg, skd
| derive_ike_keys keymat I derive keys from shared DH secret, nonces
and store in given keymat struct

lib/crypto/crypto_factory.c

libcharon/sa/ikev2/keymat_v2.c create_dh
create_dh
~ return DH plugin
@ crypto->create_dh registered for given
DH group

Figure 2.1: IKE SA establishment

IKE exchanges are implemented as task entities in charon and are situated in
the libcharon/sa/ikev2/tasks directory. The IKE SA establishment process
is implemented in the ike_init.c file in this directory. Each task represents
a finite-state machine (FSM) which changes state depending on internal or ex-
ternal events like sent or received messages. The NEED_MORE state displayed in
figure 2.1 indicates that the state machine responsible to establish an IKE SA is

18

CHAPTER 2. ANALYSIS 2.2. CODE ANALYSIS

expecting more data to proceed. This state is used to separate the sending path
from the receiving path inside the build_i/process_i and process_r/build_r
blocks.

The tasks access required functionality by requesting plugins from different
factories. Examples of such plugins are RNGs? or plugins which perform a DH
exchange.

The initiator creates the payloads of the initial message in the build_i
code block during which the initial steps of the Diffie-Hellman protocol are
performed. The task calls the create_dh function of the keymat object (CD)
which internally requests a new DH plugin instance from the crypto factory and
returns this instance to the calling task. A keymat object stores the complete
IKE SA key material and is used to derive IKE and child SA keys. A keymat
object is always associated with an IKE SA inside the IKE SA manager.

After constructing all payloads, the initiator sends the IKE _SA INIT mes-
sage to the peer and waits for a response (error handling if the peer is not
answering is omitted from this discussion). The responder processes the request
in the process_r code block and performs the DH protocol on his side. Since
it already received the DH public value from the initiator, it is able to complete
the DH exchange without waiting for further data. It then uses the SKEYSEED
from the DH exchange to derive the IKE SA keying material (DK) and creates
an IKE SA INIT response containing its DH public value to allow the initiator
to complete the initial exchange on his side.

The initiator then also derives IKE SA keying material used to protect the
following IKE AUTH or CHILD CREATE SA exchanges (DK). This com-
pletes phase 1.

2.2.2 IKE AUTH

Figures 2.2, 2.3 and 2.4 show the code involved during the authentication of
an IKE SA. As can be deduced from the number of graphs needed to illustrate
the process, this exchange is more complex than the IKE SA INIT exchange
explained in the previous section.

The initiator begins the exchange by building its own AUTH payload used
to prove its identity to the responder. This is done by creating a so called
authenticator plugin (see the CB label). After that, the authenticator’s build
function illustrated by the BA sub-graph shown in figure 2.3 is called. To
construct the signed authentication octets the authenticator plugin requests a
private key (GP) matching a specific certificate configured for this connection.
The returned private key is used to sign the AUTH octets requested from the
keymat object (A8) of the associated IKE SA. The private key is implemented
as a plugin.

The initiator then sends a message containing the constructed payloads to
the responder and waits for a response message.

The responder creates a verifier plugin to check the AUTH payload extracted
from the initiator’s message. The creation of a verifier plugin is depicted in the
CV graph. The responder processes the authentication octets of the initiator
by calling the verifier’s process function (PA). The authenticator requests the
AUTH octets from the IKE SA keymat (A8) and retrieves the associated public

2Random number generator

19

2.2. CODE ANALYSIS CHAPTER 2. ANALYSIS

Initiator Responder
libcharon/sa/ikev2/tasks/ike_auth.c libcharon/sa/ikev2/tasks/ike_auth.c
build_i process_r
—% auth_create_builder | my_auth | ——-<: Message :‘-» l auth_create_verifier | other_auth |———>@
17 v
—ﬂ my_auth->build I I other_auth->process I»f
v
I add_auth_cfg(ike_sa) I
NEED_MORE
T
| NEED_MORE
Y
process_i build_r
@(——{ auth_create_verifier l other_auth | —-I auth_create_builder my_auth |
—~[other_auth->process I —-I my_auth->build I
17 v
| ike_sa->set_state (IKE_ESTABLISHED) l P, , I ike_sa->set_state (IKE_ESTABLISHED) I
<+ Message b=
____________ J
libcharon/sa/authenticator.c libcharon/sa/authenticator.c

authenticator_create_verifier authenticator_create_builder
@') Input: ike_sa, nonces, init msgs IH Input: ike_sa, cfg, nonces, init msgs %
s. s.

create authenticator to verify signature: create authenticator to build signature:

Figure 2.2: IKE SA authentication

key needed to verify the signature from the credential manager. To use the
public key, its chain of trust must be verified first.

The trust chain verification process is shown in (PU) of figure 2.4. The
credential manager verifies the signature chain of all involved certificates starting
from the peer’s public key until it reaches a trusted CA certificate. The details
of how such signature chains are verified is explained in the implementation
section 5.5.7.3.

To create the response message, the responder performs the same steps as the
initiator to create its AUTH payload (CB, BA). The initiator verifies the AUTH
payload of the responder using the same steps as described for the responder
(CV, PA).

After the IKE SA is established, both peers normally install the first child
SA.

2.2.3 CHILD CREATE_ SA

The CHILD CREATE SA exchange is implemented as a task in the
child_create.c file and depicted in figure 2.5 on page 22. The initiator starts
by collecting the traffic selectors and proposals from the configuration (not vis-
ible in the graph) and allocates a SPI by calling the allocate_spi function.
This function dispatches into the registered kernel plugin to acquire a free SPI
from the OS kernel. If the connection has PFS enabled, the initiator starts a
new DH exchange and builds all required payloads. After sending the message,
the task changes its state to NEED MORE and waits for an answer.

The responder processes the received CHILD CREATE SA message and
extracts the contained payloads. It conducts the DH exchange and then directly
installs the derived child SA keying material in the kernel. The complete process

20

CHAPTER 2. ANALYSIS 2.2. CODE ANALYSIS

libcharon/sa/ikev2/auth...ors/pubkey_auth...c libcharon/sa/ikev2/auth...ors/pubkey_auth...c
build process
I lib->credmgr->get_private }~— I ike_sa->get_keymat | keymat |
I ike_sa->get_keymat I keymat | I get_auth_octets | keymat |'—
¥
| get_auth_octets I keymat }-_ | lib->credmgr->create_public_enum... |
17 7
| sign | private | I enumerator->enumerate |——
generate AUTH payload and append | foreach: verify trustchain of pubkey B‘
to message +

I public->verify |

ibs...swan/credentials/credential_manager.c I foreach: verify sig of AUTH data B\
get_private

| get_private_by_keyid |
y or

| get_private_by_cert |

ibcharon/sa/ikev2/keymat_v2.c
get_auth_octets

I skp = skp_verify || skp_build |

use prf with skp to create auth data
from ike_sa_init

Figure 2.3: IKE public key authenticators

of deriving keys for the new child SA is depicted in (SI).

First the child SA data structure associated with the task is set into the
CHILD INSTALLING state. The derive_child_keys function of the keymat
is called to derive keying material for the child SA (DC). The kernel plugin
add_policy (IP) and add_sa (IS) functions are used to install the new policy
and state into the kernel’s SPD and SAD databases. If no errors occurred, the
state of the child SA is set to CHILD INSTALLED and it is attached to the
associated IKE SA object.

The responder then builds the payloads of the response message and sends
the message back to the initiator. The initiator processes the message and
calls the select_and_install function to derive child keying material after
extracting the payloads. It then installs the new policy and state in the kernel.

21

2.2. CODE ANALYSIS CHAPTER 2. ANALYSIS

libstrongswan/credentials/credential_manager.c mbstrongswan/credentials/sets/certﬁcache.c

trusted_enumerate get_issuer_cert issued_by

| verify_trust_chain | | this->cache->issued_by }-——) | subject->issued_by(issuer)

verify_trust_chain

libstrongswan/plugins/x509/x509_cert.c

| get_issuer_cert

issued_by
* check_certificate | > el
ifi ey = issuer->get_public_key |
| check_certificate |—~> | validity checks % 7
| check constraints l% | valid = key->verify |

I check crl, ocsp (if enabled) B]

Figure 2.4: IKE Certificate trust chain verification

Initiator Responder
libcharon/sa/ikev2/tasks/child_create.c Tt libcharon/sa/ikev2/tasks/child_create.c
—————— | Message |--+>
build i | i Mo s process_r
I allocate_spi(this) //kernel I : I process_payloads(message) ‘
T
| keymat->create_dh | dh | i process_payloads
I get_dh_group_number(ke_payload) I
| build_payloads I
I keymat->create_dh | dh |
build_payloads : v
: I set_other_public_value I dh I
|ke_p|d_create_from_dh | dh I | PFS case B‘
= :
NEED_MOREy : NEED_MORE
process_i
| process_payloads(message) l build_r
¢ @<—~~[select_and_install ‘
process_payloads H ¢
| set_other_public_value I dh I : I build_payloads ‘
I
process_i : build_payloads
@(——-I select_and_install I <-‘——-|: Message i —————— I ke_pld_create_from_dh | dh |

ibcharon/sa/ikev2/tasks/child_create.c

select_and_install libcharon/sa/ikev2/keymat_v2.c
|chiId_sa->set_state:CHILD_INSTALLING I derive_child_keys
) I get_shared_secret | dh |
| derive_child_keys | keymat |—~ >
* I derive integrity and encryption keys %
| child_sa->install //SAD |—~—>®

+ libcharon/sa/child_sa.c
@H> | chunk_clear(&integ_i) ... I

install

v ®—>l hydra->kernel_interface->add_sa ‘

| child_sa->add_policies //SPD]»

&

libcharon/sa/child_sa.c

| child_sa->set_state:CHILD_INSTALLED I add_policies

+ ’ l hydra->kernel_interface->add_policy I

| ike_sa->add_child_sa I

Figure 2.5: Child SA establishment

22

CHAPTER 2. ANALYSIS 2.2. CODE ANALYSIS

2.2.4 Source of randomness

Randomness is provided by requesting a random number generator plugin in-
stance from the crypto factory of libstrongswan. This process is shown in figure
2.6, by using the nonce creation process as an example. Depending on the re-
quested quality (RNG_WEAK or RNG_STRONG), a suitable RNG plugin providing
the needed quality is created and returned to the caller by the crypto factory.
The get_bytes or allocate_bytes functions can be used to retrieve random
chunks from the RNG plugin.

IKE_SA_INIT
libcharon/sa/ikev2/tasks/ike_init.c lib/crypto/crypto_factory.c
build_i/process_r create_rng
| create_rng(RNG_WEAK) I >

find the best matching
quality, but at least as
good as requested

!’

| rng->allocate_bytes

CREATE_CHILD_SA

libch.../sa/ikev2/tasks/child_create.c

build_i/build_r

| generate_nonce
I

)’

generate_nonce

I create_rng(RNG_WEAK) II

v

| rng->allocate_bytes

Figure 2.6: Nonce generation

2.2.5 Payload encryption

Figure 2.7 schematically shows the code involved in the encryption of payloads
in the IKE message exchanges. If a new connection is initiated by calling the
initiate function of the IKE SA, all tasks required to establish an IKE SA and
the associated child SA are created and run by the task manager. The tasks
then call back the IKE SA generate_message function to create the appropriate
message sent to the peer in their exchange.

The generate_message function calls the generate function of the message
which in turn checks if the message is required to be encrypted. If encryption
is enabled, an encrypted payload is created by accessing the key material of the
IKE SA’s keymat object. The actual encryption is done by a crypter plugin
which in turn uses a RNG plugin to retrieve random bytes needed for the IV?.
The yellow “aead” blocks in figure 2.7 depict cryptographic algorithms using

3Initialization vector

23

2.2. CODE ANALYSIS CHAPTER 2. ANALYSIS

the Authenticated Encryption with Associated Data (AEAD) mechanism to
guarantee confidentiality and integrity of the IKE message payloads (see RFC
5116 [21] for details on AEAD).

A 2
libcharon/sa/ike_sa.c
initiate
libcharon/sa/ikev2/task_manager_v2.c | Queue tasks B\
initiate
| | -I task_manager->initiate I
message = message_create
Y mbcharon/encoding/message.c
| call build function for all tasks |>| generatelmessage generate
17 | message->generate I keymat |———> | rule->encrypted? |
| run tasks |>| *
L2 T | get_aead | keymat I
| ike_sa->generate_message I v
17 | wrap_payloads |
| retransmit | *
L7 [libcharon/encoding].../encryption_payload.c wrap_payloads
| SEND & encrypt -
I encryption_payload_create |
I crypto->create_rng(RNG_WEAK) I T
L7
L7 generate
| rng->get_bytes(iv) | | init ike header B‘
12
‘ rng->get_bytes(padding) I | encr->set_transform | aead I
¥ v
I crypter->encrypt | aead | (———I encryption->encrypt |

Figure 2.7: IKE SA payload encryption

2.2.6 Payload decryption

Figure 2.8 shows the process of payload decryption which reverses the process
of payload encryption presented in chapter 2.2.5. An incoming message is pro-
cessed by calling the task managers process_message function. This function
parses the message by calling the message parse_body function with the keymat
object from the IKE SA as function argument.

The parse_body function calls decrypt_payloads, which determines if the
payloads are encrypted or not. If they are, it decrypts them by using an en-
cryption payload object which uses the keymat’s keying material to decrypt and
verify the payloads.

24

CHAPTER 2. ANALYSIS

2.2. CODE ANALYSIS

libcharon/sa/ike_sa.c

process_message

—-l task_manager->process_message I

libcharon/encoding/message.c

parse_body

decrypt_payloads |

libcharon/sa/ikev2/task_manager_v2.c

process_message

| parse_message |
T

v

parse_message

I message->parse_body I keymat |—

v

process_message

I further processing of decr. message [H

v

decrypt_payloads

type == ENCRYPTED? |

v

|

get_aead

| keymat |

v

l encr->set_transform | aead |

¥

encr->decrypt |

libcharon/encoding/.../encryption_payload.c

decrypt

aead->decrypt

]

17

parse |

Figure 2.8: IKE SA payload decryption

25

Chapter 3
Design

The main concept is to separate the security relevant functionality from all other
IKEv2 services and split the IKEv2 key management daemon into two compo-
nents: a trusted and an untrusted part. The trusted part performs the critical
operations, stores all relevant keying material and exposes the necessary services
to the untrusted component via a well defined and minimal interface. The split
of the components must guarantee the fulfillment of the security requirements
defined in section 3.5.

3.1 Threat model

An example system separated in a trusted and untrusted component is shown in
figure 1.1. This section describes the threat model used during the development
of this project.

It is assumed that the strongSwan charon IKEv2 daemon, which is consid-
ered an untrusted software component in the envisioned architecture, is poten-
tially under total control of the attacker. This means the attacker has complete
access to all data available to the IKEv2 daemon and is able to execute arbi-
trary code with the privileges of charon. As a result of this assumption, charon
is must not have access to any sensitive data. Also, intermediate computation
results which are needed to create sensitive values must be protected from access
by untrusted components. The following list summarizes the capabilities of an
attacker:

1. The attacker is able to analyze all network traffic of the system.

2. The attacker is able to compromise the untrusted IKE daemon and read
all its memory.

3. The attacker can execute arbitrary code in the untrusted component with
the privileges of the IKE daemon.

4. As a result of point 2, the attacker is in possession of all data known to
the IKE daemon.

5. The attacker can send arbitrary commands to the TCB (deduced from
point 4).

26

CHAPTER 3. DESIGN 3.2. TCB SECURITY PROPERTIES

3.2 TCB security properties

Even if an attacker manages to take complete control of the untrusted part
of the system as described by the threat model, the TCB must guarantee the
following properties:

1. The attacker has no access to the IPsec SA keying material.

2. The attacker has no means to draw conclusions about the IPsec SA keying
material from sensitive intermediate values.

3. The attacker is therefore unable to decrypt recorded ESP traffic of a com-
munication session.

4. The attacker is not able to forge authentication exchanges with unautho-
rized peers.

5. As a conclusion from point4, the attacker is not able to derive child keying
material for an unauthorized connection.

6. The attack can only install IPsec connections, which conform to the secu-
rity policy.

3.3 Assumptions

e The TCB security properties stated in the previous section 3.2 can only
be guaranteed if the separation of the components itself withstands an
attack, i.e. an attacker is unable to subvert the TCB in any way. In this
project it is assumed that the separation mechanism in use is designed as
such that this requirement holds. Possible solutions to this problem are
elaborated in section 6.2.8.

e The untrusted IKE daemon and the trusted component can only exchange
messages via the well defined interface and are otherwise completely iso-
lated from each other. In a real system this is very difficult to achieve since
there are many possibilities for side channels, which have been demon-
strated to work, see for example [1, 4, 27].

e Denial-of-Service attacks (DoS) are not considered security critical because
an attacker taking over the untrusted part and making all communication
with the TCB impossible is still unable to access sensitive material.

3.4 Split of IKE

The charon software design is based on a plugin architecture. Almost every
functional part of the daemon is implemented as a plugin. This provides the
flexibility to extend or exchange specific parts of the system by providing a
suitable plugin implementation. As outlined in the code analysis section 2.2,
most security critical operations and values are already encapsulated in plugins.
The changes needed to allow complete separation of the critical parts from the
charon daemon are limited. Therefore, the architecture depicted in figure 3.1 is
proposed.

27

3.5. REQUIREMENTS CHAPTER 3. DESIGN

UNTRUSTED TRUSTED

charon :

———————— e N i

plugins :
DH >

______________ .
tasks

keymat >

TcB [l

nonceg

use | | kernel_ipsec > IPC

DUQUU
|

Y

listener

private_key >

public_key >

Figure 3.1: Split of IKE into trusted and untrusted parts

By implementing custom plugins which act as proxy between the trusted and
untrusted parts of the component, it is possible to move the key material and
related operations into the TCB. This ensures that the untrusted part has no
direct access to security relevant data. The critical parts extracted from charon
are implemented by the Trusted Key Manager which is part of the TCB.

3.4.1 Contexts and identifiers

By using a well-defined interface, the internal functionality of the TCB’s key
manager is completely hidden from the charon plugins. The plugins reference
the data (and their associated state) needed for processing via context identifiers
(IDs). These identifiers are positive integers and can be interpreted as index
values into an array of contexts stored in the TCB.

This mechanism enables plugins to instruct the key manager to perform
actions on specific contexts without needing access to the actual data. Only
uncritical results of operations are returned to the caller plugin (e.g. the public
value of a DH exchange). This architecture allows the trusted part to be minimal
while the bulk of the charon code can be used as is, in the untrusted part to
handle the vast majority of IKEv2 processing.

To simplify the implementation of the TCB, the management of context IDs
is done in the untrusted part since it is not security-critical. The trusted part
supports a limited number of contexts. These limits can be inquired from the
TCB by the untrusted components by using a dedicated exchange. Usage of
context IDs outside the supported numeric range is refused by the TCB.

3.5 Requirements

This section outlines the identified requirements of the separated system in
detail. These requirements specify the properties the TCB must enforce even in

28

CHAPTER 3. DESIGN 3.5. REQUIREMENTS

the event of a complete compromise of the untrusted part of the system. The
properties are derived from the threat model described in section 3.1 and the
more abstract description of TCB security properties in section 3.2.

3.5.1 TCB robustness

The systems comprising the TCB must be robust and reliable. The TCB must
be as simple as possible and at the same time small in size.

3.5.2 Separation

The IKEv2 component must be separated into a trusted and untrusted part in
such a way that the size and complexity of the TCB are minimal.

3.5.3 Communication

The communication protocol between the trusted and untrusted parts must be
simple, robust and well-defined to allow a verifiable implementation.

3.5.4 Separation of key material

The untrusted part of the IKEv2 component must not have access to generated
key material that is used for authentication of peers, encryption and integrity
protection of user data (i.e. child SA keys). This also includes critical intermedi-
ate values, which may result from the key agreement, generation and derivation
process.

Excluded from the critical material are keys used to protect the IKE SA. As
defined by the threat model, an attacker might be able to compromise the un-
trusted IKE daemon and read all its memory (point 2). Defeating IKE message
decryption by protecting the IKE SA keys is unnecessary since the attacker is
already in possession of all data these keys are intended to protect.

This implies that the procedure used to create the IKE SA keys must be
cryptographically secure and exhibit the properties of a one-way function to
prevent the deduction of the underlying shared secret from the keying material.

3.5.5 Cryptographic operations

All relevant cryptographic operations must be performed by the trusted com-
puting base (TCB) to assure the correctness of the resulting values. Since
cryptographic operations require keying material, this is also a consequence of
the requirement specified in the previous section 3.5.4.

Data and intermediate values used for cryptographic operations must follow
a strict life-cycle and it must be guaranteed, that such values are not used more
than once. Additionally generation of pathological cryptographic keys (e.g. 0)
must be detected and their usage prevented.

3.5.6 Authentication

The IKEv2 component must only allow IPsec SAs to be established for peers
that have successfully been authenticated. The authentication must be per-

29

3.5. REQUIREMENTS CHAPTER 3. DESIGN

formed by the TCB to assure the correctness of the process and foil man-in-the-
middle (MitM)! attacks. The authentication state in the TCB must always be
unambiguously associated with the corresponding SA.

3.5.7 Integrity

The security of the IKEv2 component must solely depend on the correct op-
eration of the trusted part. The security operation of the system must not be
violated by a misbehaving untrusted part.

3.5.8 Availability

The resulting system must be freely available to guarantee broader review and
allow it to be extended by other interested parties. The TKM-specific changes
and plugins should be integrated into the upstream strongSwan project. Also,
integration tests must be provided for the TKM use-case.

IMitM is a form of active eavesdropping where an attacker maintains independent con-
nections between the victims (e.g. peer and TKM) and relaying their messages while making
them believe they talk directly to each other.

30

Chapter 4

TKM interface

This chapter specifies the interface between the trusted and the untrusted parts
of the system. In a first step an overview of the communication between IKE
and TKM is given by describing how the main operations of IKE are achieved
through the usage of the services provided by the interface. After the abstract
illustration of the protocol, the data types and constants are specified. These
are the building blocks of the message exchanges which are described in section
4.3.

4.1 Protocol overview

This section gives an overview of the main IKE operations: creation and rekeying
of IKE and Child SAs. The description presents the success case and specifies
which parameters are passed back and forth between IKE and the TKM using
the exchanges specified in the chapter 4.3.1.

In the illustrated negotiation of SAs with the peer, IKE is assuming the role
of the initiator of the exchanges. As mentioned before the responder case varies
only slightly and is thus not presented here. Where necessary the exchanges
provide a parameter called “nitiator” which is used to specify whether IKE is
the initiator or responder of an IKEv2 message exchange with the remote peer.

Note that child SA and ESP! SA are used interchangeably.

4.1.1 Notation

The protocol is presented as an exchange of messages between the untrusted
component IKE and the Trusted Key Manager TKM. The name of the operation
is displayed on the left while the communicating entities are separated by an
arrow which is directed from the source to the destination. Transmitted data is
specified on the right-hand side.

For some exchanges only a status code of the performed operation is returned
to IKE. In such cases the response is simply omitted for the sake of brevity.

Since exchanges operate on contexts that contain data and maintain associ-
ated state, these must be referenced when performing operations. This is done

Encapsulating Security Payload is part of the IPsec protocol suite and provides authen-
ticity, integrity and confidentiality of data packets.

31

4.1. PROTOCOL OVERVIEW CHAPTER 4. TKM INTERFACE

using context IDs. For example the transmitted parameter nc_id identifies the
nonce context to operate on. The rationale and further explanations of context
IDs are given in section 3.4.1.

To distinguish local and remote values, loc and _rem suffixes are used.

4.1.2 Creation of an IKE SA

In a first step the client gets a nonce and a Diffie-Hellman public value from the
TKM using the nc_create and dh_create operations:

nc_ create IKE — TKM nc_id
TKM — IKE Ni

dh_create IKE — TKM : dh_id, dh_ group
TKM — IKE : KEi

The IKE daemon then initiates an IKE SA exchange with the remote peer.
Upon receipt of the peer’s response the Diffie-Hellman shared secret can be
calculated. Thus IKE issues the dh_generate_key operation:

dh_generate key IKE — TKM dh_id, KEr

TKM performs the calculation and stores the DH key for future consumption.
No data other than the status code of the operation is passed back to IKE.

Using the previously created nonce and Diffie-Hellman value plus the nonce
(Nr) received from the remote peer, a new IKE SA is created:

isa_ create IKE — TKM 1sa_id, ae_id, ia_id, dh_id, nc_d,
Nr, init, spi_loc, spi_rem
TKM — IKE sk_ai, sk_ar, sk_ei, sk_er

The returned encryption and integrity protection keys can now be used by
the IKE daemon to send encrypted and integrity protected IKEv2 messages to
the remote peer. For a consideration of why these keys can be handed out by
TKM to the untrusted side, please refer to section 3.5.4.

To authenticate itself to the remote peer the IKE daemon requests signed
local authentication data from TKM using the isa_sign exchange:

isa_sign IKE — TKM : isa_id, lc_id, init_message
TKM — IKE : AUTH loc

In possession of the necessary data and keys, the IKE _AUTH protocol step
is performed with the remote peer.

Upon reception of the peer’s response the IKE daemon starts to validate the
certificate chain of the remote peer certificate CERT:

cc_set _user certificate IKE — TKM cc_id, ri_id, au-
tha_id, CERT

Each certificate in the chain is added by issuing the cc_add_certificate
operation:

32

CHAPTER 4. TKM INTERFACE 4.1. PROTOCOL OVERVIEW

cc_add _certificate IKE — TKM cc_id, autha id, CERT

Once the root of the certificate chain is reached it must be asserted that the
CA is trusted. This is done using the cc_check_ca exchange:

cc_check ca IKE — TKM cc_id, ca_id

After successful verification of the remote certificate, IKE can authenticate
the peer:

isa__auth IKE — TKM isa__id, cc_id, init_message,
AUTH rem

As afinal step the first child SA can be created issuing the esa_create_first
exchange:

esa_create first IKE — TKM esa_id, isa_id, sp_id, ea_id,
esp_spi_loc, esp_spi_rem

With this exchange processed successfully by the TKM, IKE has established
an IKE and one ESP SA which can be used to encrypt application data according
to the associated security policy identified by sp_id.

4.1.3 Creation of a Child SA

Creating a child SA is quite similar to creating an IKE SA. All steps related to
peer authentication can be omitted since the remote identity has already been
authenticated.

To create a new child SA with perfect forward secrecy (PFS), a fresh nonce
and Diffie-Hellman value must be created:

nc_ create IKE — TKM : ne_id
TKM — IKE : Ni

dh create IKE — TKM : dh_id, dh_ group
TKM — IKE : KEi

The IKE daemon then initiates a CREATE CHILD SA exchange with the
remote peer (see section 2.1.4). Upon receipt of the peer’s response the Diffie-
Hellman shared secret is calculated by issuing the dh_generate_key operation:

dh generate key IKE — TKM dh_d, KEr

TKM performs the calculation and stores the DH key for future consumption.
Only the status code of the operation is passed back to IKE.
Finally the child SA can be created using the esa_create operation:

esa_ create IKE — TKM esa_id, isa_id, sp_id, ea_id,
dh_id, nc_id, Nr, initiator,
esp_spi_loc, esp_spi_rem

After this final step the IKE daemon has successfully established a new child
SA.

33

4.1. PROTOCOL OVERVIEW CHAPTER 4. TKM INTERFACE

4.1.4 Rekeying of an IKE SA

An IKE SA is rekeyed by replacing it with a new IKE SA. For this purpose a
fresh nonce and a DH public value is needed:

nc_ create IKE — TKM nc_id
TKM — IKE : Ni

dh_create IKE — TKM dh_1id, dh_ group
TKM — IKE : KEi

The IKE daemon then initiates a CREATE CHILD _SA exchange to rekey
the existing IKE SA with the peer. Upon receipt of the peers response the
Diffie-Hellman shared secret can be calculated:

dh generate key IKE — TKM : dh_id, KEr

Rekeying of the IKE SA, identified by parent_isa_id, is performed using the
isa_create_child operation:

isa_ create child IKE — TKM isa_ id, parent_isa_1id, ia_ id,
dh_id, nc_1id, Nr, initiator,
spt_loc, spi_rem

TKM — IKE : sk_ai, sk_ar, sk_ei, sk_er

TKM returns the new encryption and integrity keys of the new IKE SA,
which from this point on is used to exchange IKEv2 messages with the remote
peer.

To effectively complete the rekeying operation, the superseded IKE SA must
be reset:

isa_reset IKE — TKM isa_id ;g

Note that isa_id,;; is the same as the parent_isa_id used in the
isa_create_child operation.

4.1.5 Rekeying of a child SA

A child SA is rekeyed by replacing it with a new child SA. In order to achieve
this, the steps described in section 4.1.3 must be performed. After the new child
SA has been established it must be selected to make it the active SA for ESP
encryption:

esa_select IKE — TKM esa_id
The only thing left to do is to reset the old, rekeyed child SA:

esa_reset IKE — TKM : esa_id,g

34

CHAPTER 4. TKM INTERFACE 4.2. DATA TYPES AND CONSTANTS

4.2 Data types and constants

This section presents the data types and constants that are used in the spec-
ification of the TKM interface. They are referenced in the description of the
interface exchanges, which follows in section 4.3.

4.2.1 Integer types

These types are numeric integers. Their size is specified in bytes, which is also
the amount of memory an object of such a type consumes.

Table 4.1: Integer types

Name Size Description

operation_type

request_id_type

result_type

8

o

This type identifies the interface opera-
tion. Fach exchange has a correspond-

ing constant of this type.
Identifier of a request which is part of

an exchange. This allows communicat-
ing parties to associate corresponding re-

quest and response messages.
Status of a processed exchange (e.g. suc-

cess or failure).

version_type 8 Version of an interface implementation
active_requests_type 8 Number of concurrently active requests
authag_id_type 8 Authentication algorithms group handle
cag_id_type 8 Certificate Authority group handle
li_id_type 8 Local identity handle

ri_id_type 8 Remote identity handle

iag_id_type 8 IKF algorithm group handle
eag_id_type 8 ESP algorithm group handle
dhag_id_type 8 Diffie-Hellman algorithm group handle
sp_id_type 8 Security Policy handle

authp_id_type 8 Authentication parameter handle
dhp_id_type 8 Diffie-Hellman parameter handle
autha_id_type 8 Authentication algorithm handle
ca_id_type 8 Certificate Authority handle
lc_id_type 8 Local certificate handle

ia_id_type 8 IKEF algorithms handle

ea_id_type 8 ESP algorithms handle

dha_id_type 8 Diffie-Hellman algorithm handle
nc_id_type 8 Nonce context handle

dh_id_type 8 Diffie-Hellman context handle
cc_id_type 8 Certificate chain context handle
ae_id_type 8 Authenticated endpoint context handle
isa_id_type 8 IKE SA context handle

esa_id_type 8 ESP SA context handle
esp_enc_id_type 8 ESP encryptor handle
esp_dec_id_type 8 ESP decryptor handle
esp_map_id_type 8 ESP map entry handle

35

4.2. DATA TYPES AND CONSTANTS CHAPTER 4. TKM INTERFACE

abs_time_type

rel_time_type
duration_type
counter_type
pfs_flag_type
cc_time_flag_type
expiry_flag_type
auth_algorithm_type
dh_algorithm_type

iprf_algorithm_type

iint_algorithm_type
ienc_algorithm_type
eprf_algorithm_type

eint_algorithm_type
eenc_algorithm_type
key_length_bits_type

block_length_bits_type

protocol_type
init_type
ike_spi_type
esp_spi_type
nonce_length_type

N 0 —= 00 00 0 [o¢]

N N

N N

C & 00 0 00 00NN

Absolute time in seconds since unix
epoch

Relative time in seconds

Duration timespan in seconds

Generic counter type

Perfect-Forward secrecy flag

Certificate chain time flag

Ezpiration flag

Authentication algorithm identifier
Diffie-Hellman algorithm group IDs
(IANA)

IKE Pseudo-random function algorithm
IDs (IANA)

IKE Integrity algorithm IDs (IANA)
IKE Encryption algorithm IDs (IANA)
ESP Pseudo-random function algorithm
IDs (IANA)

ESP Integrity algorithm IDs (IANA)
ESP Encryption algorithm IDs (IANA)
Length of cryptographic keys in bits
Length of block in bits

Protocol numbers (IANA)

Initiator role flag

IKFE SPI in network byte order

ESP SPI in network byte order

Length of nonce

4.2.2 Variable octet types

These types are octet sequences of variable size. Data is the maximum number
of data bytes that can be stored in the octet sequence, while size is the number
of bytes an object of this type occupies in memory.

Table 4.2: Variable octet sequence types

Name Data Size Description

init_message_type 1500 1504 IKE init message

certificate_type 1500 1504 ASN.1/DER encoded X.509 certifi-

nonce_type 256 260]c\%gce value

dh_pubvalue_type 512 516 Diffie-Hellman public value

dh_priv_type 512 516 Diffie-Hellman private value

dh_key_type 512 516 Diffie-Hellman shared secret value

key_type 64 68 Cryptographic key

identity_type 64 68 DBase type for remote and local
identity

signature_type 256 260 Cryptographic signature

auth_parameter_type 1024 1028 Authentication parameter

dh_parameter_type 1024 1028 Diffie-Hellman parameter

36

CHAPTER 4. TKM INTERFACE 4.2. DATA TYPES AND CONSTANTS

4.2.3 Constants

The TKM interface specifies various numeric constants, which can be referenced
by the IKE daemon or the TKM. All constants are typed, which restricts their
range of valid values. All constants are given in hexadecimal form.

4.2.3.1

result type constants

Status of a processed exchange (e.g. success or failure).

Table 4.3: result _type constants

Name Hexvalue Description

0K 0x0000000000000000 Request was processed suc-
cessfully

Invalid_QOperation 0x0000000000000101 The requested operation is in-
valid

Invalid_ID 0x0000000000000102 The given identifier is invalid

Invalid_State 0x0000000000000103 TKM s in an invalid state to
process the given request

Invalid_Parameter 0x0000000000000104 Inwvalid value given as request
parameter

Random_Failure 0x0000000000000201 The random number genera-
tor is inoperable

Sign_Failure 0x0000000000000202 Signature could not be gener-
ated

Aborted 0x0000000000000301 Processing of request was
aborted

Math_Error 0x0000000000000401 Mathematical computation er-
ToT

4.2.3.2 version type constants

Version of an interface implementation

Table 4.4: version type constants

Name Hexvalue Description

CFG_Version 0x0000000000000000 Version of CFG interface
EES_Version 0x0000000000000000 Version of EES interface
IKE_Version 0x0000000000000000 Version of IKE interface

4.2.3.3 dh_algorithm type constants
Diffie-Hellman algorithm group IDs (IANA)

Table 4.5: dh_algorithm type constants

Name

Hexvalue

Description

Modp_3072 0x000000000000000f

tion 4)

37

3072-bit MODP Group (RFC 8526, sec-

4.2. DATA TYPES AND CONSTANTS CHAPTER 4. TKM INTERFACE

Modp_4096 0x0000000000000010 4£096-bit MODP Group (RFC 3526, sec-
tion 5)

4.2.3.4 protocol type constants
Protocol numbers (IANA)

Table 4.6: protocol type constants

Name Hexvalue Description
Proto_ESP (0x32 Encap Security Payload
Proto_AH 0x33 Authentication Header

38

CHAPTER 4. TKM INTERFACE 4.3. EXCHANGES

4.3 Exchanges

This section describes all exchanges of the different TKM interfaces. The in-
terface is comprised of two service-specific parts: IKE and EES (ESP Event
Service).

Communication is seen as an exchange of request and response message
pairs between a client and a server. In the concrete implementation, which
is presented in section 5.4, the untrusted charon daemon takes the role of the
client while TKM is the server of the IKE interface. Contrary charon acts as
a server of the EES interface, described in section 5.4.12, while the xfrm-proxy
(see section 5.6) implements the client side.

Exchanges are identified by numeric values (operation_type defined in sec-
tion 4.2.1) which are unique on a per-interface basis.

Requests contain an identifier (request_id) which is chosen by the client of
an exchange. The server must set the request_id of the corresponding response
to be identical. This enables the client to match responses to their requests
and handle multiple pending exchanges with possible out-of-order arrival of
responses.

The basic layout of a request and response object is show in figure 4.1.

Client Request Server Response
Exchange Identifier r Exchange Identifier
Request Identifier } Request Identifier

' ' Status

Request data

Response data

Figure 4.1: Request and response structure

4.3.1 IKE Exchanges

All the following exchanges are used by IKE to communicate with the TKM
and perform operations related to IKE or ESP SA establishment.

4.3.1.1 nc_create

Creates and returns a nonce of a given length.
Exchange identifier 0x0101

39

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

Request
Table 4.7: nc_ create request parameters
Name Type Description
operation operation_type Exchange ID: 00101
request_id request_id_type Request ID, chosen by untrusted
nc_id nc_id_type Handle of nonce

nonce_length nonce_length_type Length of nonce in bytes

Response

Table 4.8: nc_ create response parameters

Name Type Description

operation operation_type Exchange ID: 020101
request_id request_id_type Request ID, returned identically
result result_type Status code

nonce nonce_type Generated nonce

4.3.1.2 nc_reset

Resets a NC context to its initial nc_clean state.
Exchange identifier 0x0100

Request

Table 4.9: nc_reset request parameters

Name Type Description

operation operation_type Exchange ID: 0x0100
request_id request_id_type Request ID, chosen by untrusted
nc_id nc_id_type Handle of nonce context to reset

Response

Table 4.10: nc_reset response parameters

Name Type Description

operation operation_type Exchange ID: 0x0100
request_id request_id_type Request ID, returned identically

40

CHAPTER 4. TKM INTERFACE 4.3. EXCHANGES

result result_type Status code

4.3.1.3 dh_create

Creates anew Diffie-Hellman (DH) secret value for a given algorithm and returns
its public value, using the DH context specified by id.

Exchange identifier 0x0201

Request

Table 4.11: dh_ create request parameters

Name Type Description

operation operation_type Fzchange ID: 020201
request_id request_id_type Request ID, chosen by untrusted

dh_id dh_id_type Handle of Diffie-Hellman context
dha_id dha_id_type Id of Diffie-Hellman algorithm/group
Response

Table 4.12: dh_ create response parameters

Name Type Description

operation operation_type Exchange ID: 00201
request_id request_id_type Request ID, returned identically
result result_type Status code

pubvalue dh_pubvalue_type Diffie-Hellman public value

4.3.1.4 dh_ generate key

Calculate a DH shared secret based on the given remote public value and the
private value stored in the specified DH context.

Exchange identifier 0x0202

Request
Table 4.13: dh_generate key request parameters
Name Type Description
operation operation_type Exchange ID: 00202

request_id request_id_type Request ID, chosen by untrusted

41

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

dh_id dh_id_type Handle of Diffie-Hellman context hold-
ing private value
pubvalue dh_pubvalue_type Public value of remote
Response

Table 4.14: dh_generate key response parameters

Name Type Description

operation operation_type Exchange ID: 00202
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.5 dh_reset

Resets a Diffie-Hellman context to its initial dh_clean state.
Exchange identifier 0x0200

Request

Table 4.15: dh_reset request parameters

Name Type Description

operation operation_type Exchange ID: 00200
request_id request_id_type Request ID, chosen by untrusted
dh_id dh_id_type Handle of DH context to reset

Response

Table 4.16: dh_reset response parameters

Name Type Description

operation operation_type Exchange ID: 00200
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.6 cc_set user certificate

Sets the user certificate of a specified, clean certificate chain context. The
user certificate is associated with a given remote identity and an authentication
algorithm.

Exchange identifier 0x0301

42

CHAPTER 4.

TKM INTERFACE

4.3. EXCHANGES

Request
Table 4.17: cc_set__user certificate request parameters
Name Type Description
operation operation_type Exchange ID: 010301

request_id

request_id_type

Request ID, chosen by untrusted

cc_id cc_id_type Handle of certificate chain to store cer-
tificate
ri_id ri_id_type Handle of remote identity
autha_id autha_id_type Handle of authentication algorithm
certificate certificate_type ASN.1/DER encoded user certificate
Response
Table 4.18: cc_set user_ certificate response parameters
Name Type Description
operation operation_type Fzchange ID: 010301
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.7 cc_add_certificate

Adds a certificate to a certificate chain context. The certificate chain remains
linked if the certificate is a valid certificate representing the issuer of the previous
certificate. Otherwise the chain becomes invalid. The signature of the previous
certificate is verified using the specified authentication algorithm.

Exchange identifier 0x0302

Request
Table 4.19: cc_add _certificate request parameters
Name Type Description
operation operation_type Exchange ID: 010302

request_id
cc_id
autha_id
certificate

request_id_type
cc_id_type
autha_id_type
certificate_type

Request ID, chosen by untrusted
Handle of CC context to add certificate
Id of authentication algorithm
ASN.1/DER encoded certificate to add
to chain

43

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

Response

Table 4.20: cc_add _certificate response parameters

Name Type Description

operation operation_type Exchange ID: 020302
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.8 cc_check ca

Determine whether the current root of the certificate chain stored in the identi-
fied certificate chain context is bitwise identical to the certificate of the trusted
certificate authority specified by id.

Exchange identifier 0x0303

Request

Table 4.21: cc_ check ca request parameters

Name Type Description

operation operation_type Exchange ID: 00303
request_id request_id_type Request ID, chosen by untrusted

cc_id cc_id_type Handle of certificate chain to check
ca_id ca_id_type Handle of CA to check against
Response

Table 4.22: cc_check ca response parameters

Name Type Description

operation operation_type Exchange ID: 00303
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.9 cc_reset

Resets a certificate chain context to its initial cc clean state.
Exchange identifier 0x0300

Request

44

CHAPTER 4.

TKM INTERFACE 4.3. EXCHANGES

Table 4.23: cc_reset request parameters

Name

Type Description

operation
request_id
cc_id

operation_type Ezchange ID: 0x0300
request_id_type Request ID, chosen by untrusted
cc_id_type Handle of certificate chain to reset

Response
Table 4.24: cc_reset response parameters
Name Type Description
operation operation_type Fzchange ID: 010300
request_id request_id_type Request ID, returned identically
result result_type Status code
4.3.1.10 ae_reset

Resets an authenticated endpoint context to its initial ae clean state. All de-
pendent isa and esa contexts will become stale.

Exchange identifier 0x0800

Request
Table 4.25: ae_reset request parameters
Name Type Description
operation operation_type FEzchange ID: 0x0800
request_id request_id_type Request ID, chosen by untrusted
ae_id ae_id_type Handle of AE context to reset
Response
Table 4.26: ae_reset response parameters
Name Type Description
operation operation_type Fzchange ID: 010800
request_id request_id_type Request ID, returned identically
result result_type Status code

45

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

4.3.1.11 isa_create

IKE uses this exchange to request derivation of IKE key material for a new
IKE SA specified by isa_id. As a new authenticated endpoint is created, an
ae_id has to be provided too. TKM derives keying material for the IKE SA
using the shared secret stored in the DH context and the nonces performing the
calculations defined in RFC 5996, sections 2.13 and 2.14. The used DH and
nonce contexts are cleared after the key derivation procedure. (As the nonces
are still required for isa_auth and esa_create first, they are stored in the AE
context.) nonce_rem and spi_rem are values received from the peer, spi_loc
is generated by IKE. The initiator flag designates if IKE is the initiator or
responder of the IKE SA. The parameter ia_id defines the algorithms to use
as pseudo-random function, encryption and integrity protection of the IKE SA
identified by isa_id.

Exchange identifier 0x0901

Request

Table 4.27: isa_ create request parameters

Name Type Description

operation operation_type Exchange ID: 00901
request_id request_id_type Request ID, chosen by untrusted

isa_id isa_id_type Handle of ISA context to create

ae_id ae_id_type Handle of AE context to create

ia_id ia_id_type Handle of IKE algorithms

dh_id dh_id_type Handle of DH context holding shared se-
cret

nc_loc_id nc_id_type Handle of local nonce

nonce_rem nonce_type Nonce of peer

initiator init_type Flag designating initiator or responder
role

spi_loc ike_spi_type Local IKE security policy identifier

spi_rem ike_spi_type Remote IKE security policy identifier

Response

Table 4.28: isa_ create response parameters

Name Type Description

operation operation_type Exchange ID: 010901
request_id request_id_type Request ID, returned identically

result result_type Status code

sk_ai key_type Integrity protection key of initiator
sk_ar key_type Integrity protection key of responder
sk_ei key_type Encryption key of initiator

46

CHAPTER 4. TKM INTERFACE 4.3. EXCHANGES

sk_er key_type Encryption key of responder

4.3.1.12 isa_sign

This exchange is used by IKE to request signed authentication octets for an IKE
SA identified by isa_id from TKM. TKM generates the authentication octets
for the ISA context as described in RFC 5996, section 2.15 using the given IKE
init message. TKM then computes the signature of the generated octets using
the scheme and private key defined by the local certificate identified by lc_id.

Exchange identifier 0x0902

Request
Table 4.29: isa_sign request parameters
Name Type Description
operation operation_type Exchange ID: 0x0902
request_id request_id_type Request ID, chosen by untrusted
isa_id isa_id_type Handle of IKE SA to sign
lc_id lc_id_type Handle of local identity certificate

init_message 1init_message_type IKE init message needed to create
authentication octets

Response

Table 4.30: isa_sign response parameters

Name Type Description

operation operation_type FEzchange ID: 020902
request_id request_id_type Request ID, returned identically
result result_type Status code

signature signature_type Signed local authentication octets

4.3.1.13 isa_auth

This message exchange is initiated by IKE to authenticate an IKE SA identified
by isa_id. TKM reconstructs the authentication octets of the peer and verifies
their signature against the (already validated) certificate of the peer, as specified
in RFC 5996, section 2.15.

Exchange identifier 0x0903

Request

47

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

Table 4.31: isa_auth request parameters

Name Type Description

operation operation_type Exchange ID: 0x0903

request_id request_id_type Request ID, chosen by untrusted
isa_id isa_id_type Handle of IKE SA to authenticate
cc_id cc_id_type Handle of certificate chain holding

peer certificate
init_message init_message_type IKFE init message needed to create

authentication octets
signature signature_type Signed authentication octets from

peer

Response

Table 4.32: isa_auth response parameters

Name Type Description

operation operation_type Exchange ID: 0x0903
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.14 isa create child

IKE uses this exchange to request derivation of IKE key material for a new IKE
SA specified by isa_id in the context of an IKE SA specified by parent isa_id.
This operation can be used to rekey an existing IKE SA. TKM derives keying
material for the IKE SA using the shared secret stored in the DH context and
the nonces performing the calculations defined in RFC 5996, section 2.18. The
used DH and nonce contexts are cleared after the key derivation procedure.
nonce _rem and spi_rem are values received from the peer, spi_loc is generated
by IKE. The initiator flag designates if IKE is the initiator or responder of the
IKE SA. The parameter ia_id defines the algorithms to use as pseudo-random
function, encryption and integrity protection of the IKE SA identified by isa_id.

Exchange identifier 0x0904

Request
Table 4.33: isa_ create child request parameters
Name Type Description
operation operation_type Ezchange ID: 02090/
request_id request_id_type Request ID, chosen by untrusted
isa_id isa_id_type Handle of IKE SA to create
parent_isa_id isa_id_type Handle of parent IKE SA

48

CHAPTER 4. TKM INTERFACE

4.3. EXCHANGES

ia_id ia_id_type Handle of IKE algorithms

dh_id dh_id_type Handle of DH context holding shared
secret

nc_loc_id nc_id_type Handle of local nonce

nonce_rem nonce_type Nonce of peer

initiator init_type Flag designating initiator or respon-
der role

spi_loc ike_spi_type Local IKFE security policy identifier

spi_rem ike_spi_type Remote IKFE security policy identifier

Response

Table 4.34: isa_create child response parameters

Name Type Description

operation operation_type Fzchange ID: 00904

request_id request_id_type Request ID, returned identically

result result_type Status code

sk_ai key_type Integrity protection key of initiator

sk_ar key_type Integrity protection key of responder

sk_ei key_type Encryption key of initiator

sk_er key_type Encryption key of responder
4.3.1.15 isa_ reset

Resets an IKE SA context to its initial isa_clean state.

Exchange identifier 0x0900

Request
Table 4.35: isa_reset request parameters
Name Type Description
operation operation_type Exchange ID: 020900
request_id request_id_type Request ID, chosen by untrusted
isa_id isa_id_type Handle of IKE SA to reset
Response
Table 4.36: isa_reset response parameters
Name Type Description
operation operation_type Fzchange ID: 00900

request_id request_id_type

Request ID, returned identically

49

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

result result_type Status code

4.3.1.16 esa_create first

IKE uses this exchange to activate the initial child SA for a newly authenticated
IKE SA using the security policy specified by sp_id. As no explicit DH exchange
is performed, the generic esa_ create exchange cannot be used. The parameter
ea_id defines the algorithms to use as pseudo-random function, encryption and
integrity protection of the child SA. TKM derives keying material for the child
SA by using the nonces and the sk _d key of the IKE SA. The key derivation
algorithm is specified in RFC 5996, section 2.17.

Exchange identifier 0x0A03

Request

Table 4.37: esa_ create first request parameters

Name Type Description

operation operation_type Ezchange ID: 0z0A03
request_id request_id_type Request ID, chosen by untrusted

esa_id esa_id_type Handle of ESP SA to create

isa_id isa_id_type Handle of associated IKE SA

sp_id sp_id_type Handle of associated security policy

ea_id ea_id_type Id of ESP algorithms to use

esp_spi_loc esp_spi_type Local ESP security policy identifier

esp_spi_rem esp_spi_type Remote ESP security policy identifier
Response

Table 4.38: esa_create first response parameters

Name Type Description

operation operation_type Exchange ID: 0z0A03
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.17 esa_create

IKE uses this exchange to request derivation of key material for a child SA
specified by esa_id in the context of an IKE SA specified by isa_id. The
security policy associated with the ESP SA is given by sp id. The dh_id
parameter specifies the DH context to use in key derivation. It must have
been created using the dh_create and dh_generate exchanges. The nc_loc_id
parameter specifies the nonce context to use in key derivation. It must have
been created using the nc_create exchange. nonce rem is the nonce received

50

CHAPTER 4. TKM INTERFACE 4.3. EXCHANGES

from peer. The initiator flag designates if IKE is the initiator or responder of
the child SA. The parameter ea_id defines the algorithms to use as pseudo-
random function, encryption and integrity protection of the child SA. TKM
derives keying material for the child SA by using the shared secret stored in the
DH context, the nonces and the sk_d key of the IKE SA. The key derivation
algorithm is specified in RFC 5996, section 2.17.

Exchange identifier 0x0A01

esp_spi_loc
esp_spi_rem

esp_spi_type
esp_spi_type

Request
Table 4.39: esa_ create request parameters
Name Type Description
operation operation_type Exchange ID: 010A01
request_id request_id_type Request ID, chosen by untrusted
esa_id esa_id_type Handle of ESP SA to create
isa_id isa_id_type Handle of associated IKE SA
sp_id sp_id_type Handle of associated security policy
ea_id ea_id_type Id of ESP algorithms to use
dh_id dh_id_type Handle of DH context holding shared se-
cret
nc_loc_id nc_id_type Handle of local nonce
nonce_rem nonce_type Remote nonce of peer
initiator init_type Flag designating initiator or responder

role
Local ESP security policy identifier
Remote ESP security policy identifier

Response
Table 4.40: esa_create response parameters
Name Type Description
operation operation_type Ezchange ID: 0z0A01
request_id request_id_type Request ID, returned identically
result result_type Status code
4.3.1.18 esa create no pfs

IKE uses this exchange to request derivation of key material for a child SA
specified by esa_id in the context of an IKE SA specified by isa_id. The
security policy associated with the ESP SA is given by sp id. The nc_loc_id
parameter specifies the nonce context to use in key derivation. It must have
been created using the nc_create exchange. nonce rem is the nonce received
from peer. The initiator flag designates if IKE is the initiator or responder of

o1

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

the child SA. The parameter ea id defines the algorithms to use as pseudo-
random function, encryption and integrity protection of the child SA. TKM
derives keying material for the child SA by using the nonces and the sk _d key
of the IKE SA. The key derivation algorithm is specified in RFC 5996, section
2.17.

Exchange identifier 0x0A02

Request

Table 4.41: esa_create_no_ pfs request parameters

Name Type Description

operation operation_type Ezchange ID: 0z0A02
request_id request_id_type Request ID, chosen by untrusted

esa_id esa_id_type Handle of ESP SA to create

isa_id isa_id_type Handle of associated IKE SA

sp_id sp_id_type Handle of associated security policy

ea_id ea_id_type Id of ESP algorithms to use

nc_loc_id nc_id_type Handle of local nonce

nonce_rem nonce_type Remote nonce of peer

initiator init_type Flag designating initiator or responder

esp_spi_loc esp_spi_type E()olgal ESP security policy identifier

esp_spi_rem esp_spi_type Remote ESP security policy identifier
Response

Table 4.42: esa_create_no_ pfs response parameters

Name Type Description

operation operation_type Exchange ID: 0z0A02
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.19 esa_select

Chooses the ESP SA identified by esa_id for outgoing traffic encryption.
Exchange identifier 0x0A04

Request

Table 4.43: esa_select request parameters

52

CHAPTER 4. TKM INTERFACE 4.3. EXCHANGES

Name Type Description

operation operation_type Ezchange ID: 0z0A04
request_id request_id_type Request ID, chosen by untrusted
esa_id esa_id_type Handle of ESP SA to select

Response

Table 4.44: esa_ select response parameters

Name Type Description

operation operation_type Exchange ID: 0z0A04
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.20 esa_reset

Resets an ESP SA context to its initial esa_clean state.
Exchange identifier 0x0A00

Request

Table 4.45: esa_reset request parameters

Name Type Description

operation operation_type Ezchange ID: 0z0A00
request_id request_id_type Request ID, chosen by untrusted
esa_id esa_id_type Handle of ESP SA to reset

Response

Table 4.46: esa_reset response parameters

Name Type Description

operation operation_type Exchange ID: 0z0A00
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.1.21 tkm version

Returns the version of the TKM - IKE interface.

Exchange identifier 0x0000

53

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

Request

Table 4.47: tkm _version request parameters

Name Type Description

operation operation_type Exchange ID: 0x0000
request_id request_id_type Request ID, chosen by untrusted

Response

Table 4.48: tkm_version response parameters

Name Type Description

operation operation_type Exchange ID: 00000
request_id request_id_type Request ID, returned identically
result result_type Status code

version version_type Version of the IKE interface

4.3.1.22 tkm _limits

Returns limits of various TKM IKE resources.
Exchange identifier 0x0001

Request

Table 4.49: tkm _limits request parameters

Name Type Description

operation operation_type Exchange ID: 00001
request_id request_id_type Request ID, chosen by untrusted

Response
Table 4.50: tkm limits response parameters
Name Type Description
operation operation_type Exchange ID: 00001
request_id request_id_type Request ID, returned
identically
result result_type Status code

54

CHAPTER 4. TKM INTERFACE

4.3. EXCHANGES

max_active_requests

nc_contexts

dh_contexts

cc_contexts

ae_contexts

isa_contexts

esa_contexts

active_requests_type

nc_id_type
dh_id_type

cc_id_type

ae_id_type

isa_id_type

esa_id_type

Mazimum number of si-
multaneously active re-

quests
Mazimum number of

nonce contewts
aximum number of

Diffie-Hellman contexts

Mazximum number
of certificate chain
contexts
Mazimum number of
authenticated endpoint
contexts

Mazimum number of

IKFE SA contexts
Mazimum number of

ESP SA contexts

4.3.1.23 tkm reset

Reset all contexts of the TKM - IKE interface to their initial state.

Exchange identifier 0x0002
Request
Table 4.51: tkm _reset request parameters
Name Type Description
operation operation_type Fzchange ID: 00002

request_id

request_id_type

Request ID, chosen by untrusted

Response
Table 4.52: tkm _reset response parameters
Name Type Description
operation operation_type Fzchange ID: 010002
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.2 ESP SA Event Service (EES) Exchanges

The exchanges specified in this section are used by the xfrm-proxy to commu-
nicate with IKE. EES is used to send notifications about ESP SA events such

as acquire or expire.

35

4.3. EXCHANGES CHAPTER 4. TKM INTERFACE

4.3.2.1 esa_acquire

TKM uses this exchange to request the initiation of an ESP SA with associated
Security Policy identified by sp_id.

Exchange identifier 0x0100

Request

Table 4.53: esa_acquire request parameters

Name Type Description

operation operation_type Exchange ID: 0x0100

request_id request_id_type Request ID, chosen by untrusted

sp_id sp_id_type Handle of associated security policy to ac-
quire ESP SA for

Response

Table 4.54: esa__acquire response parameters

Name Type Description

operation operation_type Exchange ID: 0x0100
request_id request_id_type Request ID, returned identically
result result_type Status code

4.3.2.2 esa_expire

TKM uses this exchange to signal the expiration of an ESP SA with associated
Security Policy identified by sp_id. The ESP SPI of the remote peer and the
protocol number (ESP/AH) are passed as parameters, as well as a flag specifying
if the SA is about to expire (soft expiry) or has expired (hard expiry).

Exchange identifier 0x0101

Request
Table 4.55: esa_expire request parameters

Name Type Description
operation operation_type Ezchange ID: 020101
request_id request_id_type Request ID, chosen by untrusted
sp_id sp_id_type Handle of associated security policy
spi_rem esp_spi_type Remote ESP security policy identifier
protocol protocol_type Protocol of ESP SA

56

CHAPTER 4. TKM INTERFACE 4.4. STATE MACHINES

hard expiry_flag type Flag designating a hard or soft expiry
event

Response

Table 4.56: esa_expire response parameters

Name Type Description

operation operation_type Fzchange ID: 0x0101
request_id request_id_type Request ID, returned identically
result result_type Status code

4.4 State machines

Contexts are used to describe stateful entities within the TKM. They are finite
state machines (FSM) which have a set of states and transitions between those
states. The FSM is in a specific state at any given time and can only change
its state by performing a transition. A transition prescribes the source state
the FSM has to be in, the actions to execute and the new target state once the
transition has completed.

The state machine transitions to a known failure state if an error occurs.
To recover from such an error the FSM has to be reinitialized by explicitly
performing a reset operation.

The state of the overall TKM system can be interpreted as the sum of the
states of all FSMs and their associated data at any given time.

4.4.1 Notation

All states of an FSMs are listed by name and giving a short description of the
state. The initial state of the state machine is marked with a *.

Transitions are given by their name, source and target states and a descrip-
tion explaining the actions performed during when transitioning. If a transition
can be performed from multiple states, all of them are listed in the source field.
A * symbol as source means that the transition can be executed from any state.

Additionally each state machine is depicted by a diagram. Transitions are
drawn as directed arrows from the source to the target state with a label iden-
tifying the name of the transition.

Reset and error transitions are treated differently in order to create less
cluttered graphs. These two transitions can be triggered from any state so their
labels are omitted and their arrows have different styles. Reset transitions are
shown using blue lines and error transitions are marked with red dashed lines.

4.4.2 Nonce Context (nc)

Nonce contexts provide random nonces of a specified length. In order to prevent
uncontrolled reuse of values, nonce contexts are destroyed whenever a nonce
context is used within TKM.

57

4.4. STATE MACHINES CHAPTER 4. TKM INTERFACE

4.4.2.1 States

Table 4.57: Nonce Context States

Name Description

clean* No nonce is present.
invalid Due to an error the context is erased. It can only be reused after

explicitly reseting of the context.
created A monce is available for consumption.

4.4.2.2 Transitions

Table 4.58: Nonce Context Transitions

Name Source Target Description

create clean created Create new nonce.

consume created clean Consume nonce.

invalidate * invalid Invalidate nonce context; it can

only be reused by explicitly reset-
ting the context.

clean Reset monce context to initial
clean state.

clean

invalid

created

Figure 4.2: Nonce context state machine

4.4.3 Diffie-Hellman Context (dh)

A Diffie-Hellman context represents a Diffie-Hellman exchange with the peer.

58

CHAPTER 4. TKM INTERFACE 4.4. STATE MACHINES

4.4.3.1 States

Table 4.59: Diffie-Hellman Context States

Name Description

clean* Initial clean state.

invalid Error state.

created Waiting for remote pubvalue.

generated Diffie-Hellman shared secret has been calculated and is ready to
be used.

4.4.3.2 Transitions

Table 4.60: Diffie-Hellman Context Transitions

Name Source Target Description
get_dha_id created created Return DHA reference.
get_secvalue created created Return local Diffie-Hellman

secret value.

consume generated clean Use Diffie-Hellman shared
secret thus consuming it.

create clean created Create new Diffie-Hellman
context.

generate created generated Generate the shared Diffie-
Hellman secret.

invalidate * invalid Invalidate Diffie-Hellman

context; it can only be
reused by explicitly reset-
ting the context.

clean Reset Diffie-Hellman con-
text to initial clean state.

39

4.4. STATE MACHINES CHAPTER 4. TKM INTERFACE

get_secvalue

VN

| |

get_dha_id ! S
‘/

created f-----—-———-—— invalid

generate

consume

generated

Figure 4.3: Diffie-Hellman context state machine

4.4.4 Certificate Chain Context (cc)

A certificate chain context is used to verify the trustchain of a user certificate
by checking each certificate signature and asserting that the chain is attested
by a trusted certificate authority.

4.4.4.1 States

Table 4.61: Certificate Chain Context States

Name Description

clean* Initial clean state.

invalid Error state.

linked CC is linked.

checked CC has been checked and verified.

4.4.4.2 Transitions

Table 4.62: Certificate Chain Context Transitions

Name Source Target Description

create clean linked Create new certificate
chain

add_certificate linked linked Add new certificate to the

certificate chain.

60

CHAPTER 4. TKM INTERFACE

4.4. STATE MACHINES

check

linked

checked

Check that the current
root of the CC' is a trusted
CA certificate.

Return the last certificate
which is the current root
of the CC.

Return start of validity pe-
riod.

Return end of validity pe-
riod.

Invalidate certificate
chain; it can only be
reused by explicitly reset-
ting the context.

Reset certificate chain to
initial clean state.

get_certificate

add_certificate

get_last_cert

get_not_after

Figure 4.4: Certificate chain context state machine

4.4.5 Authentication Endpoint Context (ae)

Authenticated endpoints represent peers of IKE connections. Multiple IKE SAs
can be established to the same authenticated endpoint.

4.4.5.1 States

61

4.4. STATE MACHINES

CHAPTER 4. TKM INTERFACE

Table 4.63: Authentication Endpoint Context States

Name Description

cleanx* Initial clean state.

invalid Error state.

unauth AFE context is unauthenticated.
loc_auth Local identity of AE is authenticated.
authenticated AFE is authenticated.

active AE is authenticated and in use.

4.4.5.2 Transitions

Table 4.64: Authentication Endpoint Context Transitions

Name Source Target Description
create clean unauth Create new
authenticated
endpoint.
sign unauth loc_auth Sign local au-
thentication
octets.
authenticate loc__auth authenticated Verify remote
authentication
octets
activate authenticated active Use authenti-
cated endpoint
for IKE SA.
is_initiator authenticated authenticated Return local
initiator role of
authenticated
endpoint.
get_nonce_rem authenticated authenticated Return nonce
unauth of remote peer.
get_nonce_loc authenticated authenticated Return local
loc__auth nonce
get_sk_ike_auth_loc unauth unauth Return local
SK_p wvalue.
get_sk_ike_auth_rem loc_auth loc__auth Return remote
SK_p wvalue.
reset * clean Reset authenti-

62

cated endpoint
to initial clean
state.

CHAPTER 4. TKM INTERFACE 4.4. STATE MACHINES

invalidate * invalid Invalidate
authenticated
endpoint; it
can only be
reused by
explicitly re-
setting the
context.
T
[\«
‘ clean ’\
- get_sk_ike_auth_loc
s create
i i get_nonce_rem
> j
invalid
.

jget_sk_ike_auth_rem

get_nonce_loc

authenticate

get_nonce_loc is_initiator

Figure 4.5: Authenticated endpoint context state machine

4.4.6 IKE SA Context (isa)
4.4.6.1 States

Table 4.65: IKE SA Context States

Name Description

63

4.4. STATE MACHINES CHAPTER 4. TKM INTERFACE

cleanx* Initial clean state
invalid FError state
active IKE SA is in active use.

4.4.6.2 Transitions

Table 4.66: IKE SA Context Transitions

Name Source Target Description
create clean active Create new IKE SA.
- get o et S . SK_ .
- get veia e R o reference :
..,,r,é,set L Clean Reset]KESAtom,tml o
state
Cinvalidate * invalid ~ Invalidate IKE SA; it can only

be reused by explicitly resetting
the context.

clean

invalid

get_sk_d

get_ae_id

Figure 4.6: IKE SA context state machine

4.4.7 ESP SA Context (esa)
4.4.7.1 States

Table 4.67: ESP SA Context States

Name Description

64

CHAPTER 4. TKM INTERFACE 4.4. STATE MACHINES

cleanx Initial clean state.
invalid Error state.
selected ESA is selected.
active ESP SA is active.

4.4.7.2 Transitions

Table 4.68: ESP SA Context Transitions

Name Source Target Description
create clean active Create a new ESP SA.
select_sa active selected Select an ESP SA to be used for

outgoing traffic matching the
associated security policy.

selected active Unselect an ESP SA so it is not
used for encryption of outgoing
traffic matching the associated
security policy.

* invalid Invalidate ESP SA; it can only
be reused by explicitly resetting
the context.

* clean Reset ESP SA to initial clean
state.

invalid | <€--------—-——- selected

unselect_sa

create

Figure 4.7: ESP SA context state machine

65

Chapter 5

Implementation

This chapter describes the implementation of the design outlined in chapter 3.
The first section gives a high-level overview of the system and introduces the
different components, what their purpose is and how they interact.

The next section briefly presents how the interface is described in XML,
how that specification is transformed into various formats and what parts of
the system are generated based on that specification. The next section then
describes the remote procedure call (RPC) library which is used by various
components for communication.

Section 5.4 gives an in-depth characterization of the changes to the
strongSwan project, the newly implemented plugins and how the integration
of Ada code into the existing project is realized. Following that the Trusted
Key Manager implementation is presented.

The new component xfrm-proxy which provides ESP SA events to charon-
tkm is described in section 5.6. Additional libraries that are used by either
TKM or xfrm-proxy are illustrated in section 5.7. Finally limitations of the
current implementation with regards to the design are listed in section 5.8 and
the implementation is examined if and to what degree it meets the requirements
laid out in section 3.5.

5.1 System Overview

The system is comprised of three distinct components:
1. charon
2. key manager
3. xfrm-proxy

Charon provides the non-critical IKE protocol handling and is implemented
by leveraging the existing strongSwan IKEv2 implementation. IKE messages
with a remote peer are exchanged using a network socket. It uses the Trusted
Key Manager to perform sensitive operations, such as generating key material
or authenticating a remote peer. The two components communicate via the
TKM interface presented in the previous chapter. The interface messages are
exchanged via Unix sockets, which are abstracted by the tkm-rpc library.

66

CHAPTER 5. IMPLEMENTATION 5.2. XML SPECIFICATION

TRUSTED UNTRUSTED TRUSTED

charon

EES client

Y

EES service TKM client

Kernel

Figure 5.1: System overview

The TKM uses a Netlink/XFRM socket to install security policies and key
material of an IPsec SA in the kernel.

Similarly to the communication between the charon and TKM, the trusted
xfrm-proxy communicates with the charon daemon using an Unix domain socket.
The xfrm-proxy handles acquire and expire events for IPsec SAs, sent by the
kernel via a Netlink/XFRM socket. These events are then propagated to the
charon daemon for processing.

All components and their implementation are described in detail in the rest
of this chapter.

5.2 XML specification

The interface specification, which is the basis of the communication of system
components, is done in XML. Extensible stylesheet language transformations
(XSLT!) are used to generate many different representations of the XML doc-
ument.

Automatically generating code and documentation from a single XML source
assures that the created documents are always in sync and there is no mismatch
between the implementation and the specification. The cost of interface change
and extension is lowered considerably since the generation process is automated
and no manual steps are necessary. Figure 5.2 shows the process of applying the
XSL transformations to the specification and the various generated outputs.

An interesting example of such a transformation is the generation of the
Ada context state machine code. Leveraging the newly added contract feature
of Ada 2012, the transitions of a context state machine are translated into
pre- and postconditions. Listing 5.1 shows the specification of the nc_create
transition as an example.

The generated Ada code is shown in listing 5.2. The preconditions state
that the nonce context with the given ID must be in the “clean” state. This
corresponds to the source state element of the XML specification. Transitioning
to the target state “created” is assured by the postcondition. If a violation of
a pre- or postcondition occurs a System.Assertions.Assert_ Failure exception is
raised by the Ada runtime. This assures that only transitions conforming to the

IXSLT is a language standardized by the W3C (World Wide Web Consortium) for trans-
forming XML documents

67

5.2. XML SPECIFICATION CHAPTER 5. IMPLEMENTATION

| Types&ConstantsAda'%

| Types & Constants C B‘

Server interface Ada B‘

XML
Specification

| Client interface Ada B‘

Client interface C B‘

| Contexts FSM Ada %

| Contexts FSM graphs %

XSLT

| Types & constants TeX |S\

| Exchanges TeX I%

Generated output

Figure 5.2: XSL Transformation of XML specification

specification are possible. Confidence that the code implements the specification
can be raised further by applying the GNATprove® tool [3] to the source. The
XSL code generation process provides support to run GNATprove automatically,
after the sources have been created.

Another example of generated output are the state machine diagrams show
in section 4.4.

The following list enumerates the main XSLT output that is generated from
the specification:

e Types: Ada and C type definitions

e Constants: Ada and C constant definitions

e RPC: Ada RPC library with exported C functions, includes request/re-
sponse marshaling and server-side exchange ID to service procedure dis-
patching

e Contexts: Ada context state machines including Ada 2012 contracts

e Documentation: Types, constants and exchange description as well as
state machine diagrams

2GNATprove is a formal verification tool for Ada 2012 contracts. It can prove that sub-
programs honor their preconditions and postconditions.

68

© 0 N e G R W N

-
o

IS I R N

CHAPTER 5. IMPLEMENTATION 5.3. RPC LIBRARY: TKM-RPC

<transition name="create'">
<descr>Create new nonce.</descr>
<source_states>
<state name='"clean"/>
</source_states>
<target>
<state name='"created"/>
<field name="nonce"> nonce </field>
</target>
</transition>

Listing 5.1: Specification of nonce create transition

procedure create (Id : Types.nc_id_type;
nonce : Types.nonce_type)
with
Pre => Is_Valid (Id) and then
(Has_State (Id, cleamn)),
Post => Has_State (Id, created) and
Has_nonce (Id, nonce);

Listing 5.2: Generated Ada nonce create procedure

5.3 RPC library: tkm-rpc

Since the main objective of this project is to separate security-critical func-
tionality from untrusted software components and extract it into a TCB, the
need for a communication mechanism between the disjointed parts arises. The
communication layer is abstracted into a self-contained library called tkm-rpc.
It allows the untrusted and trusted side to exchange well-formed messages, so
called request and responses, as defined by the interface specification.

At the core of an exchange are the request and response data types. Clients
send a request object to a server and the server responds by sending back a
corresponding response object. Section 5.3.1 describes the general operation of
the tkm-rpc library.

To make use of the library clients simply include the necessary project or
header files, which contain the type, constant definitions and procedure or func-
tion specifications. How the library is intended to be used by clients is described
in section 5.3.3.

Server-side components are expected to provide an implementation of inter-
face specific procedures. How the server processing is done is illustrated in
section 5.3.4.

When appropriate, the concrete implementation is illustrated using the
nc_create exchange, which is specified in section 4.3.1.1.

5.3.1 Basic operation

The tkm-rpc library provides an RPC (remote procedure call) interface that uses
a data transmission channel to pass client requests to a server and responses
back to the client. The basic layout of request and response data types are

69

5.3. RPC LIBRARY: TKM-RPC CHAPTER 5. IMPLEMENTATION

shown in figure 4.1. The operation type of a request or response specifies what
exchange it is part of. Requests are matched to their corresponding responses
using the request id field. However, this is currently not implemented (see
also the limitation section 5.8). Support for multiple simultaneous exchanges
and asynchronous request processing can be implemented using the request _id
matching. Currently a call to the tkm-rpc library blocks the client until the
server’s response is received.

Most of the library code is automatically generated based on the XML speci-
fication. Only the transport-specific parts of sending and receiving requests and
responses using a particular communication method is implemented manually.
The exchange of data is performed using Unix domain sockets. The necessary
networking functionality is provided by the Anet library, which is described in
section 5.7.1.

The round trip of an exchange is illustrated by figure 5.3.

tkm-rpc
Marshal call to Unmarshal request
request object and dispatch operation
Client UNIX Server Service
interface socket interface request
Unmarshal response Marshal
response

and match to request

Figure 5.3: Basic IPC operation

A client calls a function or procedure that is specified by the TKM interface.
That call is translated into a request object with the operation set to the cor-
responding exchange id. Any parameters are marshaled into data fields of the
request object. The request is then transmitted to the server via a Unix domain
socket® [12].

On the server side of the socket, the request object is unmarshaled. The
operation is dispatched according to the exchange ID and the parameters of the
exchange are extracted from the request object. The call is then forwarded to
the server passing it the necessary arguments sent by the client. At this point the
server performs all necessary actions to service the requested operation. After
the server has finished handling the request, it returns result data. A response
data object is created with the same exchange and request IDs as the request
object. The response parameters are then marshaled into the corresponding
response data fields and the response object is sent back to the client via the
Unix socket.

Back on the client side the response is unmarshaled and any return parame-
ters are extracted from the response object. These values are then passed back
to the client thus completing the exchange.

3Unix domain sockets are a standard IPC mechanism and are part of the POSIX socket
API

70

© 0 N e G R W N

e e e e T
[S R O S Y

-
=

CHAPTER 5. IMPLEMENTATION 5.3. RPC LIBRARY: TKM-RPC

type Data_Type is record
Nc_Id : Types.Nc_Id_Type;
Nonce_Length : Types.Nonce_Length_Type;
end record;

for Data_Type use record
Nc_Id at 0 range 0 .. (8 * 8) - 1;
Nonce_Length at 8 range 0 .. (8 * 8) - 1
end record;
for Data_Type’Size use Data_Size * 8;

type Request_Type is record
Header : Request.Header_Type;
Data : Data_Type;
Padding : Padding_Type;

end record;

Listing 5.3: nc_ create request-specific data type

A complete list of all IKE exchanges is given in section 4.3.1.

5.3.2 Request and Response types

Each exchange has a specific request and response type. These are generated
from the XML specification and their basic structure is depicted in figure 4.1.
Every request has a header which contains the exchange and the request iden-
tifier. Responses contain the same header information plus an additional status
code. The result code signals success or error conditions to the caller using the
constant values specified in section 4.2.3.

Exchange specific data is stored in additional record fields after the header.
Listing 5.3 shows the generated data type of the nc_create exchange, consisting
of the header and request-specific data.

As is apparent, the requests parameters as specified in section 4.3.1.1 have
a corresponding record field in the exchange-specific data type. All requests
like all response types are of the same size. Requests that are smaller than the
required length are padded with zeros. Responses are constructed following the
same idiom.

The exact memory layout of the record is specified using an Ada record
representation clause (lines 6-9). The clause specifies that the N¢_Id record
field starts at byte offset 0. Starting at that offset the range occupied is from 0
up to bit 63. For a more detailed explanation of the representation clause, the
reader is directed to [2], section 13.5.1.

5.3.3 Client-side usage

The purpose of an RPC library is to hide the complicated exchange and trans-
port details from the user. It must be very easy to use and remote calls should
look like local procedure or function calls to the client. As previously mentioned
the majority of the RPC client library is automatically generated from the XML

71

© 0 N e Gk W N e

5.3. RPC LIBRARY: TKM-RPC CHAPTER 5. IMPLEMENTATION

with Tkmrpc.Request;
with Tkmrpc.Response;

package Tkmrpc.Transport.Client is

procedure Connect (Address : String);
-- Connect to the RPC server given by socket address.

procedure Send (Data : Request.Data_Type);
-- Send request data to RPC server.

procedure Receive (Data : out Response.Data_Type);
-- Receive response data from RPC server.

end Tkmrpc.Transport.Client;

Listing 5.4: Client Tkmrpc transport abstraction

specification. An exception is the transport layer. The next section explains
the motivation and the operation of the transport layer abstraction.

Section 5.3.3.2 illustrates how clients use the RPC library and how the in-
ternal processing works.

5.3.3.1 Transport mechanism abstraction

The transport layer constitutes the lowest level of the RPC library. To ease the
usage of different communication mechanisms, all necessary functionality is en-
capsulated in the Tkmrpc.Transport.Client package. The current implemen-
tation employs stream-oriented Unix sockets using the functionality provided
by Anet (see section 5.7.1). To run the TKM daemon on a different physical
machine, switching to a TCP socket implementation and connecting to an IP
address and port is all that is necessary from the client’s point of view.

The interface, which is automatically generated, is rather simple and only
three procedures must be implemented, see listing 5.4.

Before a client can do remote procedure calls using tkm-rpc it must con-
nect to the remote server component specifying the filename of the Unix socket,
where the server is listening for exchanges. The Send procedure is used to trans-
mit request objects to the connected RPC server while the Receive procedure
returns a response object received from the server. Section 5.3.3.2 explains how
the two procedures are used to implement request and response handling.

5.3.3.2 Request handling

Based on the XML exchange description Ada procedure definitions are gener-
ated. Since the exchanges are specified on a per-interface basis (e.g. IKE or
EES), procedures belonging together are put in the same package, e.g.
Tkmrpc.Clients.Ike. Listing 5.5 shows the generated procedure declaration
for the nc_create exchange.

The export pragmas make the procedures callable from the C programming
language. To enable the use of the library in C, a header file containing cor-

72

© 0 N e G R W N

-
o

[R N

CHAPTER 5. IMPLEMENTATION 5.3. RPC LIBRARY: TKM-RPC

procedure Nc_Create
(Result : out Results.Result_Type;
Nc_Id : Types.Nc_Id_Type;
Nonce_Length : Types.Nonce_Length_Type;
Nonce : out Types.Nonce_Type);
pragma Export (C, Nc_Create, "ike_nc_create");
pragma Export_Valued_Procedure
(Nc_Create,
Mechanism => (Nc_Id => Value, Nonce_Length => Value));
-- Create a nonce.
Listing 5.5: Nc_ Create procedure declaration (client-side)
VAT
* Create a nonce.
*/
extern result_type ike_nc_create(const nc_id_type nc_id,
const nonce_length_type nonce_length,
nonce_type *nonce) ;

Listing 5.6: ike _nc_create function declaration

responding C function declarations for each exchange is also generated. Since
the C language has no notion of packages and has one global namespace, all
procedures are prefixed with the name of the interface they belong to. Thus the
exchange to create a nonce is called Nc_Create in Ada and ike_nc_create in
C. Listing 5.6 shows the C function declaration equivalent to the Ada procedure
presented in listing 5.5.

When a client calls the Nc_ Create procedure a request object is created,
filling in the passed parameters. Next the object is transmitted using the Send
procedure described in section 5.3.3.1. Afterwards the Receive procedure is used
to get a response from the server. The result parameters are extracted from
the response data type and returned to the client depending on the function
signature.

5.3.4 Server-side processing

RPC servers are passive components which respond to requests sent by clients.
The main focus of server-side processing is automatic mapping of requests to
concrete exchanges as specified by the interface. A server implementation should
not be burdened with the details of exchange and request ID handling but con-
centrate on the implementation of the functionality prescribed by the exchange.

Much like the client part of the RPC library, most of the code is automati-
cally generated. Section 5.3.4.1 describes how incoming requests are dispatched
to their corresponding exchange handlers. After that a description of error
handling is given in section 5.3.4.2.

73

@ o kA W o e

AW o =

5.3. RPC LIBRARY: TKM-RPC CHAPTER 5. IMPLEMENTATION

procedure Nc_Create

(Result : out Results.Result_Type;
Nc_Id : Types.Nc_Id_Type;
Nonce_Length : Types.Nonce_Length_Type;
Nonce : out Types.Nonce_Type);

-- Create a nonce.

Listing 5.7: Nc_ Create procedure declaration (server-side)

procedure Dispatch
(Req : Request.Data_Type;
Res : out Response.Data_Type);
-- Dispatch IKE request to concrete operation handler.

Listing 5.8: ITke request dispatcher

5.3.4.1 Operation dispatching

All operations exposed to the client via the tkm-rpc library must be imple-
mented by a RPC server. To ensure this, an Ada package containing procedure
declarations is generated for each interface described in the XML specification.
As can be seen by comparing listing 5.7 to listing 5.5, the client and server
side procedure declarations are almost identical. The procedure is not exported
since all processing is done in Ada and the procedure is not meant to be called
from C code.

A server implementing the ike interface must provide a package body imple-
menting the Tkmrpc.Servers.Ike package.

A dispatcher which takes a request data object as input and calls the corre-
sponding procedure according to the exchange identifier is generated also. This
takes the burden of mapping an exchange ID to the correct operation handler
from the server implementation. It also avoids possible errors such as typos,
which can be hard to detect. Additionally the generated code guarantees that
all specified exchanges are handled and unknown exchanges are answered by
returning an Invalid Operation status code via a response data object. Listing
5.8 shows the procedure declaration of the ike dispatcher, which is located in
the (generated) Tkmrpc.Dispatchers.Ike package.

Since data received from the client via the Unix socket is just a sequence of
octets, a method to translate the binary data into request types and passing
them to the presented dispatcher is needed. The different parts are brought
together by the Tkmrpc.Process_Stream generic. Listing 5.9 shows the decla-
ration of the generic procedure.

To instantiate the generic, a Dispatch procedure matching the given signa-
ture must be provided. Optionally an exception handler can also be specified.
The generic Process_Stream procedure automatically converts stream data to
Tkmrpc request/response objects and passes them on to the given dispatch
procedure. The exception handler is called when the specified dispatching pro-
cedure raises an exception.

74

© 0 N e G R W N

= e
= o

-
M)

CHAPTER 5. IMPLEMENTATION 5.4. CHARON-TKM

generic
with procedure Dispatch
(Req : Request.Data_Type;

Res : out Response.Data_Type);

with procedure Exception_Handler
(Ex : Ada.Exceptions.Exception_Occurrence) is null;

procedure Tkmrpc.Process_Stream

(Recv_Data : Ada.Streams.Stream_Element_Array;
Send_Data : out Ada.Streams.Stream_Element_Array;
Send_Last : out Ada.Streams.Stream_Element_Offset);

Listing 5.9: Process stream generic

5.3.4.2 Error handling

The intended way for indicating errors during processing of client requests is
by raising exceptions. Such an exception propagates all the way up to the
Process_Stream generic’s exception block. There the result code of the response
is set to failure to indicate an error to the client.

This mechanism works well in combination with the automatically gener-
ated context state machines because violation of pre- and postconditions raise
an System.Assertions.Assert_ Failure exception (see section 5.2). These are
then properly processed by the Process_Stream generic to relieve the server
implementation of the burden of dealing with all possible error cases.

The current implementation returns Invalid Operation if an error occurs
and does not translate exceptions to their corresponding error codes, see also
section 5.8.

How potential exceptions are handled on the client side is outlined in section
5.4.13.

5.4 charon-tkm

The untrusted IKEv2 component used in conjunction with the Trusted Key
Manager infrastructure is implemented as a separate charon “instance” located in
its own directory below the strongSwan top-level source directory
(src/charon-tkm). This has the advantage that the TKM code is contained and
does not mix with other strongSwan files. The charon-tkm binary startup code
works like the already existing charon-nm instance, a special charon daemon
variant to be used with the GNOME NetworkManager project®. The only dif-
ference is the registration of custom TKM plugins as the final step of the startup
phase. The charon-tkm daemon does not rely on the dynamic plugin loading
mechanism for its core plugins, they are statically registered before entering the
main processing loop.

Since the charon-tkm code uses the tkm-rpc library written in Ada, the
daemon has to be built using an Ada-aware toolchain. This integration of Ada
code into the strongSwan codebase is explained in section 5.4.1. Apart from the

4nttp://projects.gnome.org/NetworkManager/

75

http://projects.gnome.org/NetworkManager/

5.4. CHARON-TKM CHAPTER 5. IMPLEMENTATION

tkm-rpc library explained in section 5.3, the ESP SA event service and a special
exception handler component are directly written in Ada inside the charon-tkm
project itself. These subsystems are outlined in sections 5.4.12 and 5.4.13.

5.4.1 Ada integration

As explained in section 5.3, the tkm-rpc library is written in Ada and uses the
export feature of the language (pragma Export) to make procedures available
to the charon-tkm C code. To call Ada code from C requires an initialized
Ada runtime. To that end the special adainit and adafinal procedures must
be called before and after Ada code is used. Setup and teardown of the Ada
runtime is transparently handled by the tkm-rpc library (in the tkmlib_init
and tkmlib_final functions), but the charon-tkm code must still be compiled
with an Ada-aware tool chain to correctly compile, bind and link the daemon
binary.

strongSwan uses the GNU build system, also known as the Autotools®, to
configure, compile and install the project. Ada projects using the GNAT Ada
compiler usually use gnatmake or gprbuild® to build projects. It is common prac-
tice in Ada projects to mix these two concepts by calling the respective GNAT
project manager from inside a Makefile for example. Therefore the charon-tkm
project provides a Makefile.am file which describes how to build the charon-tkm
daemon binary with gprbuild. The project uses the more advanced gprbuild
manager because it provides superior support for mixed language projects (C
and Ada in this case).

5.4.2 Initialization

The entry point of the untrusted component is the main function located in the
file charon-tkm. c. Before entering the main loop, the charon-tkm daemon calls
the tkm_init function which initializes the tkm-rpc library explained in section
5.3 and starts the exception handler (5.4.13) used to catch Ada exceptions on
the client side.

It then calls the ike_init function to connect to the IKE interface of the
TKM. After that the ESP SA event service is started which accepts ESA acquire
and expire events from clients (5.4.12). If no error occurred (which would result
in the termination of the daemon), the initialization code instructs the TKM
inside the TCB to reset itself by calling the ike_tkm_reset remote procedure
call.

Since the TKM supports a static number of contexts (see section 3.4.1), the
upper limit of context IDs is requested from the TKM. This limit configuration
is then passed on to the TKM ID manager which is initialized in the final step
along with the TKM chunk map. The daemon enters the main loop and waits
for external events.

5.4.3 ID manager

The TKM ID manager implemented in files tkm/tkm_id_manager. [h|c] han-
dles the management of the different context ID kinds. Its interface is very

Shttps://en.wikipedia.org/wiki/GNU_build_system
6GNAT’s Project Manager

76

https://en.wikipedia.org/wiki/GNU_build_system

[B S R N

CHAPTER 5. IMPLEMENTATION 5.4. CHARON-TKM

simple. The acquire_id function can be used to acquire (reserve) a new
ID for a given context (e.g. TKM_CTX_DH for a new DH context ID). The
release_id function releases an already reserved ID. If no ID can be acquired,
the acquire_id function indicates this error by returning zero. The first valid
ID of a given context always starts at number one.

5.4.4 Data passing

The TKM code uses two main techniques to pass on information from one plugin
to another for cases where the strongSwan interface is not prepared to handle
the use case. These two techniques allowed to implement the required TKM
functionality without being too invasive to the upstream strongSwan codebase.
This is especially true for situations which are only relevant for the TKM project,
with no benefit for the project as a whole.

One of these mechanisms use the chunk map explained in the next section
and the other is explained in section 5.4.4.2.

5.4.4.1 Chunk map

The chunk map can be used to store mappings of chunks’ to context IDs.

The mapping mechanism is illustrated using the nonce allocation process.
The nonce plugin allocates a fresh nonce in a new context and stores this relation
in the chunk map. This is necessary since such IDs cannot be passed along
using the existing strongSwan interfaces and are only used inside the TKM
code. Listing 5.10 shows how the described functionality is implemented in the
nonce plugin.

*chunk = chunk_alloc(size);
if (get_nonce(this, chunk->len, chunk->ptr))
{

tkm->chunk_map->insert (tkm—>chunk_map , chunk,
this->context_id) ;

Listing 5.10: Nonce ID insertion

The keymat plugin receives the nonce chunk as function parameter. It needs
the corresponding nonce context ID to tell the TKM which nonce to use for
processing. The associated context ID is retrieved from the chunk map, as
shown by listing 5.11.

/* Acquire nonce context id */
uint64_t id = tkm->chunk_map->get_id (tkm->chunk_map, nonce);

Listing 5.11: Nonce ID retrieval

7Chunks are strongSwan’s notion of binary data containing e.g. nonces or cryptographic
keys

7

© 0 N e ;o W N e

-
o

-
.

[T SO

5.4. CHARON-TKM CHAPTER 5. IMPLEMENTATION

5.4.4.2 Piggybacking

Another method of passing TKM specific information over plugin borders uses
a piggybacking technique to store informational structs inside chunk objects.
strongSwan often treats such chunks as opaque values while passing them be-
tween plugins. This allows to store TKM-specific information in these chunks
for plugins which use it to initiate an action with the TKM.

Listing 5.12 shows the isa_info_t informational structure used to transfer
ISA information from the keymat of a parent SA to the keymat of the new IKE
SA during a rekeying operation.

struct isa_info_t {
/% %

* Parent isa context id.
*/

isa_id_type parent_isa_id;

/* %

* Authenticated endpoint context id.
*/

ae_id_type ae_id;

I8

Listing 5.12: isa_info t struct

In this case the sk d data chunk returned by the get_skd function is used
to transport the isa_into_t informational structure. This is possible since the
sk d chunk is treated as an opaque value and handed to the derive_ike_keys
procedure of the new keymat as-is without any processing. The information is
stored in the sk _d chunk as shown by listing 5.13.

isa_info_t *isa_info;
INIT(isa_info,

.parent_isa_id = this->isa_ctx_id,
.ae_id = this->ae_ctx_id,
) §
*skd = chunk_create ((u_char *)isa_info, sizeof(isa_info_t));

Listing 5.13: Piggybacking

This method is simple and does not require a global data structure accessible
to the involved plugins thus avoiding the problem of synchronization.

5.4.5 Nonce generation plugin

Nonce generation plugins are a new feature of strongSwan introduced during this
project. A nonce generation plugin is responsible to create new nonces needed
in the IKE_SA INIT and CHILD CREATE _SA exchanges (see sections 2.1.2
and 2.1.4). In case of the TKM, the nonce generation plugin requests a new
nonce from the TKM by calling the ike_nc_create RPC and then registers
the nonce in the chunk map to store the nonce to context ID mapping. This

78

CHAPTER 5. IMPLEMENTATION 5.4. CHARON-TKM

mapping is used by other plugins which need to pass on a nonce context to the
TKM for key derivation purposes.

5.4.6 Diffie-Hellman plugin

The TKM Diffie-Hellman plugin instructs the TKM to perform the DH protocol
on its behalf. On creation, the plugin calls the ike_dh_create RPC with a new
context ID acquired from the ID manager. This initiates the initial steps of the
Diffie-Hellman protocol in the TKM. The plugin completes the DH exchange by
calling the ike_dh_generate_key function as soon it receives the public value
when its set_other_public_value function is called, as illustrated by figure
2.1 and 2.5. No secret values leave the TCB at any time but the DH context
stored in the TKM can be referenced later for key derivation by using the correct
DH context ID.

5.4.7 Keymat plugin

The charon-tkm code uses the new keymat registration facility developed during
this project to register a special TKM keymat variant, which acts as proxy for
the remote keying material stored in the TKM. A keymat instance is constructed
together with its corresponding IKE SA and stays active for the lifetime of this
SA.

Upon construction, the TKM keymat plugin acquires an ISA context ID
(TKM_CTX_ISA) from the ID manager. It then behaves like the standard IKEv2
keymat, except that it does not store or receive any critical data. Calls to
derive_ike_keys and derive_child_keys are dispatched into the TCB by
using context IDs. The keys used to protect the IKE SA are returned to the
keymat after the ike_isa_create or ike_isa_create_child remote procedure
call returns because they are not classified as critical (see section 3.5.4).

The keymat plugin uses the piggybacking mechanism described in 5.4.4.2 to
forward information to plugins or to extract required information from other
sources. For example the derive_child_keys function does nothing more than
use the encryption key chunks to store information needed by the kernel IPsec
plugin. The actual child key derivation is postponed until the registered kernel
plugin’s add_sa function is called by the task which takes care of child creation,
see figure 2.5 on page 22, labels (SI) and (IS).

5.4.8 Kernel IPsec plugin

After keying material for a new child SA has been derived in the TKM, the child
SA state must be established using a kernel IPsec plugin. In case of the TKM,
where no child keying material leaves the TCB and child SA policy handling
is completely done by the TKM, the kernel plugin can be kept very simple. It
only provides a custom add_sa function used to instruct the TKM to derive
child keys and install a new ESA (ESP SA) state inside the TCB’s encrypter
component. This is of course only possible if all preconditions for this operation
are met.

79

5.4. CHARON-TKM CHAPTER 5. IMPLEMENTATION

5.4.9 Private key plugin

The TKM private key plugin instructs the TKM to create and return the au-
thentication octet signature for a given ISA context. Since the code flow of the
signature creation process involves two different plugins, namely the keymat
and the private key plugin, information must be passed between these plugins.
The AUTH octet chunk returned by the keymat’s get_auth_octets function
is piggybacked in this case. See section 5.4.4.2 for an explanation of the pig-
gybacking mechanism. The TKM keymat stores the associated ISA context ID
and the initial message in the chunk and returns it to the caller, which is a
pubkey authenticator in this case (see figure 2.3). The public key authenticator
then calls the sign operation of the private key plugin. The private key code
extracts the stored data and calls the ike_isa_sign operation to create the
AUTH octet signature. The signature is then returned to the caller.

In its current implementation, the TKM private key plugin is hard-coded
to a specific key pair (alice@strongswan.org used in the strongSwan integration
test suite). The reason for this limitation lies in the way the code is searching for
a matching private key to authenticate a connection. It uses the key fingerprint
(which is encoded from the key’s modulus and public exponent values) of a
public key contained in the user certificate configured for a connection to find
the corresponding private key. Since no real private key exists in the TKM-
case, because the private key never leaves the TCB, the private key plugin must
imitate a key fingerprint to be found.

5.4.10 Public key plugin

Figure 2.3 shows how the AUTH octet signature received from a peer is verified.
Since the verification is done in the TKM, a dummy public key plugin must be
provided which fakes the verification process in the untrusted part.

To make sure charon always uses the TKM public key plugin implementation
for public key processing, it is registered first during daemon startup.

5.4.11 Bus listener plugin

The strongSwan architecture provides an internal bus which can be used to
subscribe for specific events. To inform charon about the IKE SA authorization
result from the TKM, a mechanism called authorization hooks is used. The
TKM bus listener plugin registers itself as listener for IKE messages and the
corresponding IKE authorization events to make sure it is consulted in the final
authorization round for an IKE SA.

The message hook in the TKM listener is needed to extract the authorization
payload from the peer’s incoming IKE AUTH message. The extracted autho-
rization payload is stored in the keymat in the IKE SA corresponding to the
exchange in progress. This is done by calling the custom TKM keymat function
set_auth_payload. Later this payload is used in the authorize hook of the bus
listener hook to instruct the TKM to perform the authentication process in the
TCB.

The authorize hook, called by charon as last step in authorization rounds,
retrieves the keymat by using the associated IKE SA object received as func-
tion argument. It then allocates a new certificate chain context ID and calls

80

CHAPTER 5. IMPLEMENTATION 5.4. CHARON-TKM

the internal build_cert_chain function to construct the certificate trust chain
of the received peer certificate. The peer’s user certificate stored in the au-
thentication configuration of the associated IKE SA is set as user certificate for
this CC context in the TKM by calling the ike_cc_set_user_certificate
function. This is the certificate for which trust must be established. For
all intermediate certificates, the build_cert_chain function calls the TKM
ike_cc_add_certificate RPC. The TKM verifies the trust chain. At the end
the CA certificate of the chain in question is passed on to the TKM. This cer-
tificate must be bit-wise identical to the one the TKM trusts®. If the trust chain
could not be verified, the authorize hook returns failure and the authentication
of the IKE SA does not succeed.

The the trust chain verification is successful, the authorize hook retrieves
the authentication payload stored by the message hook from the keymat and
passes it to the TKM by using the ike_isa_auth RPC. The TKM uses the given
certificate context which contains the now trusted peer public key to verify the
signature.

5.4.12 ESP SA event service (EES)

The ESP SA event service exports the EES interface specified in section 4.3.2.
The service is written in Ada as a subsystem of the charon-tkm daemon and is
located in the ees sub-directory. It uses the tkm-rpc library outlined in section
5.3 to implement its RPC interface.

The EES component accepts ESA acquire and expire events from clients and
dispatches them to the charon C code by using callbacks. The callbacks use the
strongSwan hydra kernel interface to initiate an acquire or expire event the same
way it is used if events are received from the Linux kernel directly. The ESP
SA service is used by the xfrm-proxy component outlined in section 5.6 to relay
messages from the kernel’s XFRM subsystem to charon. This is needed since
charon, in this separation scenario, is no longer allowed to talk to the kernels
IPsec SAD database directly since it contains sensitive child SA keys.

5.4.13 Exception handler (EH)

The charon TKM code located in the ehandler sub-directory provides a special
exception handler which implements the functionality to log exception messages
from within Ada code into the daemon’s log file. This mechanism is imple-
mented using the FEzceptions Actions framework of the GNAT Ada runtime.
An Ada procedure with the correct signature can be registered as handler for
any exception occurring in the runtime’.

The registered exception handler calls the imported C function
Charon_Terminate which logs the exception message into the daemon’s log
file and instructs it to terminate.

8In its current implementation, the TKM only trusts one CA
9 As a side note, this also includes internal exceptions which are normally not seen by user
code.

81

5.5. TKM CHAPTER 5. IMPLEMENTATION

5.5 TKM

The TKM component implements a minimal Trusted Key Manager as depicted
in figure 3.1 on page 28. It provides the critical functionality extracted from the
strongSwan code base. The TKM is written in the Ada programming language
and uses the tkm-rpc library described in section 5.7.2 to provide the IKE
interface (see 4.3.1) via remote procedure calls.

The dispatching of incoming calls is done by providing a custom IKE server
implementation (Tkmrpc.Servers.Ike) as explained in section 5.3.4.1. From
there, calls are forwarded to the appropriate subsystems explained in the fol-
lowing sections.

5.5.1 Client communication

Exchanges between charon-tkm and the TKM daemon are transferred using a
Unix domain socket. The TKM implementation instantiates the
Process_Stream generic described in section 5.9 with the automatically gener-
ated IKE dispatcher and a logging procedure as exception handler. The proce-
dure is used in conjunction with an Anet stream receiver to perform the request
and response processing.

5.5.2 Nonce generation

Nonces are used to guarantee freshness in the cryptographic operations when
deriving key material. Hence nonce values must be random and must not be pre-
dictable. The nonce handling is implemented in the Tkm.Servers.Ike.Nonce
package.

Currently, /dev/urandom is used as random source inside the TKM. The
quality of randomness provided by this source is considered strong enough for
the current initial iteration. The design is such that the implementation could
be easily replaced by a stronger random source at a later time.

The TKM guarantees that nonces are consumed once and can not be reused,
as specified by requirement 3.5.5. This is assured by using auto-generated nonce
FSM as explained in the state-machines section 4.4. Each created nonce is an
instantiation of a nonce FSM. If the client requests to create a new context with
an already taken nonce ID, an assertion exception is raised and an error status
is returned to the requester.

5.5.3 Diffie-Hellman

Keying material used to protect a child SA is derived from the shared secret
computed by a Diffie-Hellman exchange. This keying material is considered the
most sensitive and must therefore reside in the TCB only. From this requirement
follows that the TKM must implement the Diffie-Hellman protocol to perform
the exchange on behalf of clients like the untrusted charon-tkm daemon.
Currently the TKM provides a Diffie-Hellman implementation for the 3072-
bit and 4096-bit MODP Diffie-Hellman groups specified in RFC 3526 [19]. The
GNU Multiple Precision Arithmetic Library'® is used in the implementation

Onttp://gmplib.org/

82

http://gmplib.org/

N N

CHAPTER 5. IMPLEMENTATION 5.5. TKM

package Tkm.Crypto.Hmac_Shab12 is new Tkm.Crypto.Hmac
(Hash_Block_Size => 128,

Hash_Length => 64,

Hash_Ctx_Type => GNAT.SHA512.Context,
Initial_Ctx => GNAT.SHA512.Initial_Context,
Update => GNAT.SHA512.Update,

Digest => GNAT.SHA512.Digest);

Listing 5.14: TKM HMAC SHA-512

since an Ada binding exists'!.

An active DH exchange is stored in the DH FSM introduced in section 4.4.
The FSM’s pre- and postconditions assure that only valid states and transitions
are allowed during an exchange. If the protocol specified by the DH FSM is
violated, an assertion exception is raised and the requester is informed about
the violation. DH contexts can only be consumed if they are in generated state
as shown by the corresponding state machine diagram in section 4.4.

5.5.4 Key derivation

The TKM implements the procedures needed to derive IKE and child keys as
described by the following subsections.

5.5.4.1 IKE SA keys

The IKE SA (ISA) key derivation functionality in the TKM implements the
mechanism described in RFC 5996 [16], section 2.14. To derive keys for an
IKE SA, the derivation function first retrieves the associated DH and nonce
contexts which must be in the correct state, otherwise an exception is raised.

It then instantiates a pseudo-random function (PRF) needed to generate the
SKEYSEED value as shown by formula 5.1.

SKEYSEED = prf(Ni|Nr, shared secret) (5.1)

The TKM provides a PRF which uses a hash-based message authentication
code (HMAC) as base. The HMAC functionality is implemented as a flexible
Ada generic which can be instantiated using different hash functions. The TKM
currently does not implement its own hash functions but instead re-uses the
ones provided by the GNAT Ada compiler. The HMAC generic is instantiated
as shown by listing 5.14.

To derive the IKE SA keys, the prf+ function as specified in RFC 5996 [16],
section 2.13 is required. This functionality is again provided by an Ada generic,
which can be instantiated using different PRF contexts matching the required
signature. The prf+ function outputs a pseudo-random stream used for IKE
SA encryption and integrity keys. The keys are returned to the untrusted caller
as they are not considered critical itself. This is true under the assumption
that the PRF function used to generate the keys is strong enough to make it

impossible to reverse the process'?.

Hhttp://mtn-host.prjek.net/projects/libgmpada/
12The TKM currently uses PRF-HMAC-SHA512 as PRF for the prf+ function

83

http://mtn-host.prjek.net/projects/libgmpada/

5.5. TKM CHAPTER 5. IMPLEMENTATION

An authentication context is created alongside the ISA context after the IKE
SA keying material has been successfully derived. This AE context must first be
authenticated properly until child SA keys can be derived (see section 5.5.7.2).

5.5.4.2 Child SA keys

The process of deriving keying material for a child SA is described in RFC 5996
[16], section 2.17. The TKM only allows the derivation of child keys if the
associated authentication context (AE) is in the authenticated state:

pragma Precondition (Tkmrpc.Contexts.ae.Has_State
(Id => Tkmrpc.Contexts.isa.get_ae_id (Id => Isa_Id),
State => Tkmrpc.Contexts.ae.authenticated));

Listing 5.15: Create Esa precondition

The actual keying material for the child SA is derived using the prf+ func-
tion. Currently the TKM only supports PRF_ HMAC SHAJ512 as base for the
prf+, so the untrusted charon-tkm counterpart and the remote peer involved in
the connection must be configured accordingly. The keys derived are pushed into
the kernel’s SA database (SAD) using functionality provided by the xfrm-ada
project described in section 5.7.2.

The TKM supports different configurations for ESA creation only differing
in the way related nonce and DH contexts are consumed. The first child SA
of a connection does not depend on nonce or DH contexts at all, because it is
derived in conjunction with its IKE SA. Then there is the configuration where
no PFS is desired, so no new DH context must be created beforehand.

5.5.5 Private key

The TKM only supports authentication schemes based on asymmetric cryptog-
raphy. To create a signature using such a scheme, a private key is needed. The
key to use can be specified on the command line using the -k option. The TKM
expects the key to be a RSA PCKS#1 [15] private key in DER [14] encoding and
is loaded into the Tkm.Private_Key package where it can be retrieved using a
getter function. The functionality to load and parse the private key is provided
by the x509-ada project described in section 5.7.3.

5.5.6 CA certificate

To establish assurance in a user certificate provided by a remote peer, the trust
chain of this certificate must be verified (see the following section 5.5.7.3). Hence
the TKM needs a trust anchor which is embodied in a certificate authority (CA).
Currently the TKM only trusts one CA certificate which can be specified on the
command line using the -c option. The CA certificate in X.509 [6] format is
loaded into the Tkm.Ca_Cert package using the x509-ada (5.7.3) project. The
Load procedure of the package checks the validity of the CA certificate and

raises an exception if it is not valid.

84

L = S I S B CRE

[R R R R R R
® N O G A W N R O © X N U A W N R O

[\
©

CHAPTER 5. IMPLEMENTATION 5.5. TKM

5.5.7 Authentication

As dictated by the requirement described in section 3.5.6, the authentication
process must be performed by the TKM to assure correctness. The following
sections outline the implemented mechanisms in detail.

5.5.7.1 Signature generation

The TKM implements the RSASSA-PKCS1-vl 5 signature scheme with ap-
pendix as specified by RFC 3447 [15], section 8.2. The functionality is provided
as an Ada generic, allowing the instantiation with different hashing algorithms.
Pre-instantiated instances are provided for SHA-1 and SHA-256 algorithms.
Listing 5.16 shows how to create a signature using the PKCS#1 private key
given on the command line.

declare
use X509.Keys;

package RSA renames Crypto.Rsa_Pkcsl_Shal;

Signer : RSA.Signer_Type;

Privkey : constant RSA_Private_Key_Type
:= Private_Key.Get;

Chunk : Tkmrpc.Types.Byte_Sequence (1 .. 5)
:= (others => 10);

begin
RSA.Init

(Ctx => Signer,

N => Get_Modulus (Key => Privkey),

E => Get_Pub_Exponent (Key => Privkey),
D => Get_Priv_Exponent (Key => Privkey),
P => Get_Prime_P (Key => Privkey),

Q => Get_Prime_Q (Key => Privkey),

Expl => Get_Exponentl (Key => Privkey),
Exp2 => Get_Exponent2 (Key => Privkey),
Coeff => Get_Coefficient (Key => Privkey));

declare

Sig : constant Tkmrpc.Types.Byte_Sequence

:= RSA.Generate (Ctx => Signer,
Data => Octets);

begin

-- Do something with the signature
end ;

end ;

Listing 5.16: Signature generation

On line 4 a RSA signer is instantiated. Line 5 retrieves the private key
stored in the Tkm.Private_Key package and uses the parameters of this key to
initialize the RSA signer on line 10. Finally, on line 21 the signature over the
given data chunk is created using the Generate procedure of the RSA package.

The same code is used to create a signature over the local authentication
octets during the IKE AUTH exchange (see section 2.2.2). The charon IKEv2

85

5.5. TKM CHAPTER 5. IMPLEMENTATION

daemon currently only supports AUTH octet signatures based on the SHA-1
hash algorithm, this must be improved in a future iteration so that other hash
algorithms are possible.

5.5.7.2 Signature verification

Similar to the signature generation outlined in the previous section 5.5.7.1, the
TKM provides an Ada generic to verify RSASSA-PKCS1-v1 5 signatures [15].
To perform a verification, a RSA.Verifier_Type must be initialized using a
public key extracted from a trusted certificate. The process of trust chain veri-
fication is explained in detail in section 5.5.7.3.

During the IKE AUTH exchange, the identity of a remote peer must be
asserted. This is done by verifying the signature of the authentication octets.
If the signature validates, the authentication context (AE) of the IKE SA in
question is set into the authenticated state, meaning that it is now possible to
establish child SAs (ESA) under this IKE SA (ISA).

5.5.7.3 Certificate chain validation

Figure 5.4 provides an overview of the steps performed to establish trust in the
user certificate provided by a peer during the IKE AUTH exchange. The chosen
example involves three certificates: the user certificate A, the intermediate CA
certificate B and the trusted CA. The goal of the process is to link the user’s
X.509 [6] certificate A to the CA trusted by the TKM. This is done by verifying
the chain of certificate signatures, starting at the bottom with the peer certificate
A and moving upwards to the root of trust, the CA certificate.

: [e]

tbs tbs

A
tbs
validity | validity | ‘ validity ‘
public_key —I public_key | —{ public_key ‘
signature J signature J signature

verify verify

verify B (validity, sig)

77N
)
o

)ﬂérify A (validity, sig)

Figure 5.4: TKM trust chain validation overview

In order to to this, the user certificate depicted as certificate A in figure 5.4
must be validated using the intermediate CA certificate B, and the intermediate
certificate B must be validated using the trusted CA certificate. Validation in
the context of a certificate trust chain means to perform the following steps:

1. Checking the validity period of the certificate: The current time (Now)
must be within this period as illustrated by listing 5.17.

86

S T T N N

CHAPTER 5. IMPLEMENTATION 5.5. TKM

2. Verify the signature stored in the certificate by using the public key of the
subsequent certificate (the issuer certificate).

3. Perform additional checks as suggested by [6, &, 24]. These checks are not
yet implemented in the current state of the project.

function Is_Valid (V : Validity_Type) return Boolean

is

use Ada.Calendar;

Now : constant Time := Clock;
begin

return V.Not_Before <= Now and then Now <= V.Not_After;
end Is_Valid;

Listing 5.17: Certificate validity check

To initiate the trust chain validation process in the TKM, a new CC context
must be instantiated by calling the Cc_Set_User_Certificate remote proce-
dure call as illustrated by figure 5.5. This call stores the user certificate in the
CC for which trust must be established. Before storing the user certificate in
the context, the validity is checked.

certificate (A) ’,—B\/\)
: \

Cc_Set_User_Certiﬁcateg A

Figure 5.5: TKM trust chain set user certificate

Intermediate CAs and the final CA are added to the CC context by calling
the Cc_Add_Certificate remote procedure call as shown by figure 5.6.

TCB CC context

!

Cc_Add_Certificate

Figure 5.6: TKM trust chain add certificates

87

5.6. XFRM-PROXY CHAPTER 5. IMPLEMENTATION

The TKM checks the validity of the intermediate CA (certificate B in this
example) and performs a signature verification of the signature stored in the
user certificate A using the public key of B. The signature is checked using a
RSA verifier. If the signature verifies, the intermediate certificate B is stored in
the context along with the user certificate A.

The Cc_Add_Certificate procedure must be called multiple times for all
intermediate CAs in the trust chain and also for the final root CA. The ordering
of certificates delivered to the TKM is performed by the charon-tkm bus listener
plugin. If the ordering is incorrect, the verification of the chain fails and the
IKE SA can not be authenticated.

The next step is to link the intermediate certificate B with the certificate CA,
which is also handed to the trusted part by charon-tkm using
Cc_Add_Certificate. The signature contained in certificate B must be val-
idated using the public key stored in the received CA certificate. If the verifica-
tion is successful, the last step is to check that the top-level certificate matches
the trusted root CA, this is done by calling the Cc_Check_Ca RPC as shown
by figure 5.7. The last certificate added by the Cc_Add_Certificate must be
bit-wise identical to the CA trusted by the TKM. If this check succeeds, the
CC context is set into the checked state and the context can be used to verify
signatures.

TCB CC context

certificate (CA) e

Cc_Check_Ca

Figure 5.7: TKM trust chain check CA

5.5.8 Kernel SPD/SAD management

Since the Linux kernel stores sensitive keying material in its security-association
database, the untrusted part is not allowed to access these databases. This
must be assured by security mechanisms which are outside of the scope of this
document. But as a result, the TKM must manage the kernel’s security-policy
(SPD) and security-association (SAD) databases itself.

The xfrm-ada project (5.7.2), which has been developed during this TKM
project, is used to install security policies on TKM startup and also to manage
SA states.

5.6 xfrm-proxy

The xfrm-proxy component uses the xfrm-ada library (5.7.2) to communicate
with charon’s EES service (5.4.12). See figure 5.8 for an overview of the proxy

88

CHAPTER 5. IMPLEMENTATION 5.7. ADDITIONAL COMPONENTS

architecture.

EES service

Insert policy, states
ACQUIRE, EXPIRE

xfrm-ada
................... Anet |
N ' N
[Netlink]
[XFRM]
SAD SPD
Kernel

Figure 5.8: XFRM proxy architecture

As stated before, the kernel stores critical IPsec policies and SA states,
therefore the charon daemon is no longer allowed to communicate with the
kernel XFRM subsystem.

To make rekeying work in such a scenario, kernel XFRM acquire and expire
messages must be delivered to charon by other means. The xfrm-proxy compo-
nent subscribes to the kernel’s XFRM subsystem acquire and expire multicast
groups to receive events and delivers them to charon using the EES service.
Charon then starts create or rekeying jobs for the IPsec policy or SA in ques-
tion as usual.

5.7 Additional components

Certain functionality which was needed for the implementation of the TKM
has been realized in self-contained software projects or as extension to existing
libraries.

5.7.1 Anet

Anet is a networking library for the Ada programming language. It is used by
the Trusted Key Manager and xfrm-proxy to open or connect to Unix sockets
and communicate with charon-tkm.

Anet has been released as open-source software under the GMGPL!? license
and is available at http://git.codelabs.ch/7p=anet.git.

13GNAT Modified General Public License

89

http://git.codelabs.ch/?p=anet.git

5.8. LIMITATIONS CHAPTER 5. IMPLEMENTATION

5.7.2 xfrm-ada

This project is an Ada binding to Linux’s XFRM kernel'* interface. It provides
the functionality required to add and delete XFRM policies and states.

The XFRM framework is used to manage the IPsec protocol suite in the
Linux kernel. The XFRM states operate on the Security Association Database
(SAD) and the XFRM policies operate on the Security Policy Database (SPD).
Among other features, it provides ESP [17] payload encryption with the key
material provided by an userspace application.

The TKM uses the XFRM interface via the xfrm-ada library to manage the
SPD and SAD and provide keys for ESP encryption to the kernel.

xfrm-ada has been released as open-source software under the GMGPL li-
cense and is available at http://git.codelabs.ch/7p=xfrm-ada.git.

5.7.3 x509-Ada

This project is an Ada PKIX X.509 [6] library. It provides functionality to
process ASN.1/DER-encoded [13, 14] certificates and private keys.

x509-Ada has been released as open-source software under the GMGPL li-
cense and is available at http://git.codelabs.ch/7p=x509-ada.git.

5.8 Limitations

This section describes the limitations of the current realization of the design
outlined in chapter 3. The main reason for these limitations is the lack of time
to fully implement the envisioned functionality and are not due to inadequate
or deficient design.

5.8.1 Cryptographic algorithms

Currently only a selected set of algorithms are implemented. Table 5.1 lists the
implemented cryptographic transforms:

Usage Algorithm name IANA ID
Authentication method RSA-PKCS1-SHA1 1
Certificate chain verification =~ RSA-PKCS1-SHA256 1
Encryption Algorithm AES-256-CBC 12
Pseudo-random Function HMAC-SHA512 7
Integrity Algorithm HMAC-SHA512 14
Diffie-Hellman 3072-bit MODP Group 15
Diffie-Hellman 4096-bit MODP Group 16

Table 5.1: Implemented cryptographic algorithms

There is no inherent limitation of usable cryptographic transforms, it is
simply a question of implementing the desired methods. Algorithm agility is
ensured by the design through the use of numeric algorithm identifiers and
avoidance of hard-coded cryptographic mechanisms.

Mnttp://wuw.kernel.org/

90

http://git.codelabs.ch/?p=xfrm-ada.git
http://git.codelabs.ch/?p=x509-ada.git
http://www.kernel.org/

CHAPTER 5. IMPLEMENTATION 5.9. CONFORMANCE

5.8.2 Identity handling

The local and peer identities are currently limited to specific, hard-coded iden-
tities. The peer subject name must be “bob@strongswan.org” and the local
subject name must be “alice@strongswan.org”. This is caused by the static con-
figurability of the TKM daemon and the current private key handling of charon.
In order to allow the use of arbitrary identities the configuration mechanism of
TKM and charon-tkm needs to be fully implemented and a TKM credential set
must be implemented.

5.8.3 Certificates and keys

Currently only a single CA certificate is supported for certificate chain valida-
tion. Similarly only one private key is supported for authenticating the local
identity to the peer. Akin to the constraints with regards to identity handling,
the cause for this is also the incomplete implementation of the configuration
interface.

Additionally the currently implemented validity checks of certificates are
only rudimentary.

5.8.4 Certificate chain context reuse

A certificate chain that has been verified, is potentially usable until the end of its
validity period. Currently this fact is disregarded and verified certificate chain
contexts are not reused and must be constructed anew when authenticating a
peer.

5.8.5 Source of randomness

The nonce generation in the TKM is implemented by reading a sequence of bytes
from Linux’s random device node /dev/urandom. The source of the random
data is currently not configurable. This may not be regarded as a limitation
per-se but because the issue of random number generation is paramount to any
system constructing cryptographic keys the authors feel compelled to explicitly
mention it.

5.8.6 Exception mapping

If a processing error on the server-side occurs the status code of the reply mes-
sage is always set to Invalid _Operation. To provide the client with more specific
information about the error exceptions should be inspected and mapped to their
corresponding failure code.

5.9 Conformance to requirements

This section describes how the implementation meets the design requirements
defined in section 3.5.

o The requirement 3.5.1 demands that code running in the TCB must be as
minimal and robust as possible. This has been addressed by applying the
following measures:

91

5.9. CONFORMANCE CHAPTER 5. IMPLEMENTATION

— Use of the Ada programming language and avoidance of problematic
language constructs (like type extensions, dynamic memory alloca-
tion etc.).

— Use of agile development methods, i.e. test-driven development, pair
programming and code reviews.

— Automatic generation of interface code from XML specification, avoid-
ing implementation errors by verifying the generated code.

— Use of Ada 2012 contracts to confine generated context state machine
code.

e The separation and communication requirements 3.5.2, 3.5.3 demand that
the untrusted and trusted parts of the system are separated and com-
munication is only possible over a well-defined, minimal interface. These
requirements are guaranteed by automatically creating the interface code
from an XML-specification as described in section 5.2 and by using a sim-
ple library providing RPC services by exporting the generated interface
over Unix domain sockets (see section 5.3).

e Requirements 3.5.4 and 3.5.5 require that the untrusted part must not have
access to critical keying material and that the cryptographic operations
using this material must be implemented in the TCB to guarantee proper
operation. These requirements are fulfilled in the design by implementing
plugins which act as proxy objects between the untrusted charon-tkm
daemon and the TKM. These plugins operate with references to the real,
sensitive data and are kept very simple. No sensitive data leaves the
TCB. This directly demands that critical cryptographic operations used to
either create sensitive material or operating on sensitive material must be
implemented in the TCB as well. The following TKM-specific strongSwan
plugins are responsible to achieve the desired degree of separation:

— Nonce generation plugin (5.4.5)
DH plugin (5.4.6)
— Keymat plugin (5.4.7)

Kernel IPsec plugin (5.4.8)

e Requirement 3.5.6 requires that the TCB must enforce proper authen-
tication. The system supports strong authentication methods based on
public-key cryptography only. The secret private key required to create
valid signatures and the trusted CA certificate used to verify the peer’s
authentication data must reside in the TCB. To make this separation pos-
sible, the following TKM-specific strongSwan plugins are implemented:

— Private key plugin (5.4.9)
— Public key plugin (5.4.10)
— Bus listener plugin (5.4.11)

e Requirement 3.5.7 demands that a misbehaving untrusted part is not able
to violate the security properties guaranteed by the TCB. As a formal

92

CHAPTER 5. IMPLEMENTATION 5.9. CONFORMANCE

analysis of the proposed IKEv2 separation protocol has not been per-
formed, this property is only assumed but not formally proven, see also
section 5.8.

93

Chapter 6

Conclusion

This chapter provides a summary of the contributions and an outlook on possible
future work.

6.1 Contributions

This section discusses the main results of this work which are the analysis and
splitting of the IKE protocol and demonstrating the viability of the concept
through the prototypical implementation of the envisioned system.

6.1.1 IKE protocol split

After formulating desired security properties and identifying the critical com-
ponents of the IKE protocol a concept to split the key management system
into an untrusted and trusted part has been proposed. Care was taken to only
extract the functionality that is absolutely necessary from the untrusted IKE
processing. Thus, the presented interface between IKE and TKM facilitates the
implementation of a small and robust trusted component. This interface has
been specified in an XML document which is used as a basis for the implemen-
tation.

The splitting of the protocol guarantees that even if the untrusted side is
completely subverted by an attacker the TCB upholds the proposed security
goals.

6.1.2 Prototype implementation

The IKEv2 separation design proposed in this paper has been implemented
and demonstrated to be a viable solution to attain a higher level of security.
The untrusted parts of the IKE daemon are implemented on top of the exist-
ing strongSwan IKE implementation while the trusted components have been
implemented from scratch using the Ada programming language.

Leveraging the XML specification of the interface and using it to automati-
cally generate code for the IKE and TKM, errors in the transformation process
from the specification to the code are avoided. This mechanism enables changes
to the interface at a low cost with a significantly smaller potential for errors

94

CHAPTER 6. CONCLUSION 6.2. FUTURE WORK

compared to a manual translation of the specification into code. Since the im-
plementation spans multiple programming languages (Ada and C) this takes
even more burden off the implementer.

Generating Ada 2012 contracts from the specification of the code used in the
TCB, the conformance of these parts of the TKM implementation are checked
against the specification at runtime. Additionally these checks can also be
formally verified by the GNATprove tool (see section 5.2).

6.2 Future work

This section outlines planned and possible future steps to improve upon the
foundation of the current TKM implementation. In the first part of this section
concrete work items are discussed which are planned to be implemented soon.
These steps directly address the limitations presented in section 5.8.

The latter part discusses broader issues which aim to address the correct
enforcement of assumptions formulated in section 3.3.

6.2.1 Credential set

The private key handling of charon-tkm must be extended with a TKM specific
credential set to allow the usage of private keys with different subject than al-
ice@strongswan.org. The set should provide an own implementation of a private
key enumeration function (create_private_enumerator of credential_set_t).
This way a configured private key could be fetched and installed in the credential
manager on demand.

6.2.2 Exception mapping

As described in section 5.3.4.2; exceptions which are raised during processing of a
client request are handled by the Process Stream generic. Exceptions should be
mapped to their corresponding failure code (see result_type constants specified
in section 4.2.3) and the status code of the response set accordingly. This gives
the client more information about what kind of processing error occurred.

6.2.3 Additional checks for generated key material

The sanity checks for generated Diffie-Hellman values and cryptographic keys
should be augmented to avoid the usage of problematic key material undermin-
ing the employed encryption or integrity protection mechanisms.

6.2.4 Validation of certificates

Additional checks outlined in [6, &, 24] must be implemented to more accurately
verify the validity of certificates and certificate chains.

6.2.5 Configuration subsystem

Most deficiencies enumerated in section 5.8 can be rectified by making the cur-
rent implementation more dynamically configurable. This would allow the usage

95

6.2. FUTURE WORK CHAPTER 6. CONCLUSION

of TKM in many more scenarios which would considerably broaden the appli-
cability of the presented solution. It is expected that this will be implemented
in the near future.

6.2.6 Automated tests

Even though the whole TKM system has been developed following the test-
driven development' methodology, no automated integration test suit has been
built. This was partly because the system is built-up by many different compo-
nents and partly because of some deficiencies in the current testing framework
of strongSwan, which impeded the addition of automated test cases.

In the meantime the infrastructure for the automated test of strongSwan has
been improved. Once these changes are finalized, TKM-specific test cases will
be added to allow the automated and reproducible testing of the whole TKM
system. This ensures that changes to parts of the system are detectable and
clearly indicated by failing tests.

6.2.7 Cryptanalytic review

A formal and rigorous cryptographic analysis of the “Splitting” and the com-
munication between IKE and TKM is highly desirable. It is assumed that an
adversary cannot somehow obtain or deduce key material or other sensitive
information (see section 3.1) either using the data freely available to IKE or
performing exchanges as specified by the interface to extract additional infor-
mation from the TKM. Furthermore Man-in-the-Middle attacks must also be
prevented.

In this context, a critical operation is the isa_sign exchange specified in
section 4.3.1.11, since it is used to sign data (authentication octets) with a
private key to assert the local identity to the peer. Parts of the input data for
the signature are private to the TKM while other elements are fixed but known
to the untrusted side. Yet another portion of the input can be chosen arbitrarily
by an adversary assuming the role of IKE.

By repeatedly performing the aforementioned isa_sign exchange a mali-
cious entity can abuse the TKM as a random oracle and mount an adaptive
chosen-plaintext attack. Employing a signature algorithm which is resistant
against such attacks should ensure the desired security properties but since a
successful attack would nullify the security properties of the TKM system this
issue must be analyzed with great care.

6.2.8 Platform integration

The basic premise for the extraction of security critical functionality into a
TCB is, as stated in section 3.2, that the untrusted charon-tkm daemon can
only interact with the trusted TKM using the exchanges specified in the in-
terface description (see section 4.3.1). For high assurance systems, the process
isolation mechanism of a standard Linux system is not adequate and does not
provide the necessary level of separation, as was already mentioned in section
3.3. Additionally, in an ordinary operating system the amount of code that has

ITDD is a software development process which employs on short development cycles with
a focus on writing good unit tests.

96

CHAPTER 6. CONCLUSION 6.2. FUTURE WORK

to be counted to the trusted computing base is in the range of hundred thousand
or possibly even millions of lines of code. This stands in stark contrast to the
demand that the TCB should be minimal.

Integrating the implemented system into an environment that offers superior
isolation mechanisms and a smaller TCB size is thus a requirement to actually
attain a higher level of security. Table 6.1 lists potential technologies or mech-
anisms which could be used to complement the separated IKE system.

Name Reference

Physical separation none

Linux Containers http://lxc.sourceforge.net/
SELinux http://selinuxproject.org/
Separation Kernel [26]

Table 6.1: Possible target IKE/TKM platforms

Putting charon-tkm and the TKM daemon on physically distinct hosts is
appealing because it is apparent, that charon-tkm and TKM can only exchange
information via the intended communication channels. Additionally, such a
system is expected to be fairly straight forward to implement thanks to the
transport layer abstraction in the tkm-rpc library described in section 5.3.3.1.
The need for additional hardware is a major drawback.

The same level of separation could be achieved by porting the charon-tkm
and TKM daemon components to a separation kernel (SK). Unfortunately there
are no freely available SKs at the time of this writing. Some commercial products
exist but they are only available to paying customers.

Linux containers and SELinux are another possible solution to secure the
trusted from the untrusted part. The degree of isolation they offer might be
enough for certain usage scenarios. Using these mechanisms would however not
address the issue of having a large TCB.

97

http://lxc.sourceforge.net/
http://selinuxproject.org/

Index

A IPsec, 11, 90

Ada, 12 ISA, 83

Ada 2012, 12

Attacker, 26 K
kernel, 20, 90

B

BSD, 13 L
L4Ka::Pistachio, 13

C Linux, 13

C, 11

CA, 84 M

charon, 11, 26 Microkernel, 13

Coyotos, 13 MitM, 30

CREATE CHILD SA, 17 monolithic, 13

D‘) N

Diffie-Hellman, 15 Nonce, 16

DoD, 12

DOS, 27 P

E Pascal, 12
PFS, 17, 84

ESP, 27, 31, 90 PRF, 83

F

Fiasco, 13 R

FSM, 18, 57 RPC, 66, 69

fel S

GMGPL, 89 SA, 11

GNATprove, 68 SAD, 84, 88, 90
sensitive values, 14

H shared secret, 15

HMAC, 83 SKEYSEED, 16, 83

Hypervisor, 13 SPD, 88, 90
strongSwan, 11

I

IKE, 11, 31 T

IKE AUTH, 16 TCB, 10

IKE_SA INIT, 15 TDD, 96

IKEv1, 11, 13 TKM, 12, 31

IKEv2, 11, 13 tkm-rpc, 12

1P, 11 Trusted Key Manager, 12

98

INDEX

INDEX

\%\%
Windows, 13

X
XFRM, 90
XSLT, 67

99

Bibliography

1]

2]

3]

[4]

[5]

16]

7]

18]

19]

Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. On the power
of simple branch prediction analysis. In Proceedings of the 2nd ACM sym-
posium on Information, computer and communications security, ASTACCS
'07, pages 312-320, New York, NY, USA, 2007. ACM.

Ada Rapporteur Group (ARG). Ada Reference Manual. Language and
Standard Libraries - International Standard ISO/IEC 8652:2012 (E). 1SO,
2012. http://www.ada-auth.org/standards/adal2.html.

AdaCore. Project Hi-Lite / GNATprove. http://wuw.open-do.org/
projects/hi-lite/gnatprove/, 2012. [Online; accessed 04-December-
2012].

Endre Bangerter, David Gullasch, and Stephan Krenn. Cache Games -
Bringing Access Based Cache Attacks on AES to Practice. Cryptology
ePrint Archive, Report 2010/594, 2010. http://eprint.iacr.org/2010/
594,

Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker, Tim
Deegan, Peter Loscocco, and Andrew Warfield. Breaking up is hard to do:
security and functionality in a commodity hypervisor. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
11, pages 189-202, New York, NY, USA, 2011. ACM.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revo-
cation List (CRL) Profile. RFC 5280 (Proposed Standard), May 2008.

Cas Cremers. Key exchange in IPsec revisited: formal analysis of IKEv1
and IKEv2. In Proceedings of the 16th European conference on Research in
computer security, ESORICS’11, pages 315-334, Berlin, Heidelberg, 2011.
Springer-Verlag.

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan
Boneh, and Vitaly Shmatikov. The most dangerous code in the world:
validating SSL certificates in non-browser software. In ACM Conference
on Computer and Communications Security, pages 38-49, 2012.

D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409
(Proposed Standard), November 1998. Obsoleted by RFC 4306, updated
by RFC 41009.

100

http://www.ada-auth.org/standards/ada12.html
http://www.open-do.org/projects/hi-lite/gnatprove/
http://www.open-do.org/projects/hi-lite/gnatprove/
http://eprint.iacr.org/2010/594
http://eprint.iacr.org/2010/594

BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

High Order Language Working Group, Department of Defense. Depart-
ment of Defense Requirements for High Order Computer Programming
Languages: Steelman. Technical report, United States Department of De-
fense, June 1978.

Jean Ichbiah. Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A-1983, 1983.

IEEE. IEEE 1003.1-2008 - IEEE Standard for Information Technology -
Portable Operating System Interface (POSIX(R)). IEEE, December 2008.

International Telecommunication Union ITU. Information technology -
Abstract Syntax Notation One (ASN.1): Specification of basic notation.
Series x: Data networks, open system communications and security di-
rectory, International Telecommunication Union, Geneva, Switzerland, oct
2011. ITU-T Recommendation X.680 (2011) - Technical Corrigendum 1.

International Telecommunication Union ITU. Information technology -
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER). Series x: Data networks, open system communications and security
directory, International Telecommunication Union, Geneva, Switzerland,
oct 2011. ITU-T Recommendation X.690 (2011) - Technical Corrigendum
1.

J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1. RFC 3447 (Informa-
tional), February 2003.

C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 5996 (Proposed Standard), September
2010. Updated by REC 5998.

S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed
Standard), December 2005.

S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard), December 2005. Updated by RFC 6040.

T. Kivinen and M. Kojo. More Modular Exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE). RFC 3526 (Proposed
Standard), May 2003.

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: theory and practice. SIGOPS Oper.
Syst. Rev., 25(5):165-182, September 1991.

D. McGrew. An Interface and Algorithms for Authenticated Encryption.
RFC 5116 (Proposed Standard), January 2008.

Catherine Meadows. Analysis of the Internet Key Exchange Protocol using
the NRL Protocol Analyzer. In IEEE Symposium on Security and Privacy,
pages 216-231, 1999.

101

BIBLIOGRAPHY BIBLIOGRAPHY

23]

24]

[25]

[26]

Bertrand Meyer. Applying "Design by Contract". Computer, 25(10):40-51,
October 1992.

E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000.
Updated by RFC 5785.

Reto Buerki, Robert Dorn, Adrian-Ken Rueegsegger. Split of IKEv2
Services into a Trusted and a Semi-Trusted Component. http://www.
secunet.com/, 2011.

J. M. Rushby. Design and verification of secure systems. SIGOPS Oper.
Syst. Rev., 15(5):12-21, December 1981.

[27] Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.

Cross-VM side channels and their use to extract private keys. In Pro-
ceedings of the 2012 ACM conference on Computer and communications
security, CCS 12, pages 305-316, New York, NY, USA, 2012. ACM.

102

http://www.secunet.com/
http://www.secunet.com/

	Introduction
	Overview
	IPsec and IKEv2
	strongSwan
	Ada
	Trusted Key Manager

	Related work

	Analysis
	IKEv2 protocol analysis
	Notation
	IKE_SA_INIT
	IKE_AUTH
	CREATE_CHILD_SA

	Code analysis
	IKE_SA_INIT
	IKE_AUTH
	CHILD_CREATE_SA
	Source of randomness
	Payload encryption
	Payload decryption

	Design
	Threat model
	TCB security properties
	Assumptions
	Split of IKE
	Contexts and identifiers

	Requirements
	TCB robustness
	Separation
	Communication
	Separation of key material
	Cryptographic operations
	Authentication
	Integrity
	Availability

	TKM interface
	Protocol overview
	Notation
	Creation of an IKE SA
	Creation of a Child SA
	Rekeying of an IKE SA
	Rekeying of a child SA

	Data types and constants
	Integer types
	Variable octet types
	Constants
	result_type constants
	version_type constants
	dh_algorithm_type constants
	protocol_type constants

	Exchanges
	IKE Exchanges
	nc_create
	nc_reset
	dh_create
	dh_generate_key
	dh_reset
	cc_set_user_certificate
	cc_add_certificate
	cc_check_ca
	cc_reset
	ae_reset
	isa_create
	isa_sign
	isa_auth
	isa_create_child
	isa_reset
	esa_create_first
	esa_create
	esa_create_no_pfs
	esa_select
	esa_reset
	tkm_version
	tkm_limits
	tkm_reset

	ESP SA Event Service (EES) Exchanges
	esa_acquire
	esa_expire

	State machines
	Notation
	Nonce Context (nc)
	States
	Transitions

	Diffie-Hellman Context (dh)
	States
	Transitions

	Certificate Chain Context (cc)
	States
	Transitions

	Authentication Endpoint Context (ae)
	States
	Transitions

	IKE SA Context (isa)
	States
	Transitions

	ESP SA Context (esa)
	States
	Transitions

	Implementation
	System Overview
	XML specification
	RPC library: tkm-rpc
	Basic operation
	Request and Response types
	Client-side usage
	Transport mechanism abstraction
	Request handling

	Server-side processing
	Operation dispatching
	Error handling

	charon-tkm
	Ada integration
	Initialization
	ID manager
	Data passing
	Chunk map
	Piggybacking

	Nonce generation plugin
	Diffie-Hellman plugin
	Keymat plugin
	Kernel IPsec plugin
	Private key plugin
	Public key plugin
	Bus listener plugin
	ESP SA event service (EES)
	Exception handler (EH)

	TKM
	Client communication
	Nonce generation
	Diffie-Hellman
	Key derivation
	IKE SA keys
	Child SA keys

	Private key
	CA certificate
	Authentication
	Signature generation
	Signature verification
	Certificate chain validation

	Kernel SPD/SAD management

	xfrm-proxy
	Additional components
	Anet
	xfrm-ada
	x509-Ada

	Limitations
	Cryptographic algorithms
	Identity handling
	Certificates and keys
	Certificate chain context reuse
	Source of randomness
	Exception mapping

	Conformance

	Conclusion
	Contributions
	IKE protocol split
	Prototype implementation

	Future work
	Credential set
	Exception mapping
	Additional checks for generated key material
	Validation of certificates
	Configuration subsystem
	Automated tests
	Cryptanalytic review
	Platform integration

